
ar
X

iv
:1

80
2.

07
21

0v
1 

 [
cs

.C
V

] 
 2

0 
Fe

b 
20

18
1

Real-Time Dense Stereo Matching with ELAS on

FPGA Accelerated Embedded Devices
Oscar Rahnama1,2, Duncan Frost1, Ondrej Miksik1,3 and Philip H.S. Torr1

Abstract—For many applications in low-power real-time
robotics, stereo cameras are the sensors of choice for depth
perception as they are typically cheaper and more versatile
than their active counterparts. Their biggest drawback, however,
is that they do not directly sense depth maps; instead, these
must be estimated through data-intensive processes. Therefore,
appropriate algorithm selection plays an important role in
achieving the desired performance characteristics.

Motivated by applications in space and mobile robotics, we
implement and evaluate an FPGA-accelerated adaptation of the
ELAS algorithm. Despite offering one of the best trade-offs
between efficiency and accuracy, ELAS has only been shown
to run at 1.5−3 fps on a high-end CPU. Our system preserves
all intriguing properties of the original algorithm, such as the
slanted plane priors, but can achieve a frame rate of 47fps whilst
consuming under 4W of power. Unlike previous FPGA based de-
signs, we take advantage of both components on the CPU/FPGA
System-on-Chip to showcase the strategy necessary to accelerate
more complex and computationally diverse algorithms for such
low power, real-time systems.

Index Terms—Range Sensing, RGB-D Perception

I. INTRODUCTION

IN many areas of robotics, such as autonomous navi-

gation [1], [2], [3] and manipulation/grasping [4], not

only is the ability to perceive depth critical, but it needs

to be obtained very accurately and in real-time. On mobile

or embedded platforms, power consumption, cost, size and

weight also become important factors to consider. For instance,

assistive augmented glasses should be mobile, lightweight and

ergonomic whilst retaining the ability to operate for long

periods on limited battery power [5], [6].

Active methods of measuring depth, which are commonly

used due to their high accuracy, carry certain disadvantages.

LIDAR systems are often bulky, heavy and costly. Infrared

systems, on the other hand, are limited in their range, sus-

ceptible to interference and, more importantly, constrained by

ambient lighting. Passive methods may not be limited by these

factors, however, they are computationally very expensive and

their accuracy/latency depends heavily on the techniques used.

Stereo matching algorithms can be broadly split into global

energy minimization methods and local matching techniques.

The former are often more accurate, but the generally

large/irregular memory requirements and sequential/iterative

nature of their underlying algorithms make them dependent

This work was supported by People Programme (Marie Curie Actions -
“Initial Training Networks”) of the EU FP7 under REA grant No. 317497
(EDISON), Technicolor, ERC grant ERC-2012-AdG 321162-HELIOS, EP-
SRC grant Seebibyte EP/M013774/1, EPSRC/MURI grant EP/N019474/1.

1 Department of Engineering, University of Oxford, UK
2 OxSight Ltd 3 Emotech Labs

on powerful processors for speed up, and even then, their

frame rate is limited. Conversely, local methods struggle with

textureless and occluded regions, but the uniformity of their

computations and the absence of dependencies between pixels

makes them very suitable parallel acceleration.

Benefiting in part from the greater accessibility provided

by CUDA/OpenCL, such acceleration has been predominantly

done with Graphics Processing Units (GPU). However, Field

Programmable Gate Arrays (FPGA) are becoming increasingly

competitive alternatives, especially in power limited systems,

with their capacity for in-stream processing, adherence to strict

timings and supremacy at sliding-window operations [7].

Their effectiveness for stereo image processing has been

previously demonstrated [8], [9], [10] with the most accurate

implementations usually relying on Semi-Global Matching

(SGM) [11]. However, as SGM is highly recursive, memory

intense and, in its entirety, ill suited to acceleration, those that

do either only partially implement it or sacrifice latency and

throughput by relying heavily on external memory.

In this paper, we investigate the adoption and acceleration

of a competing algorithm for low-power embedded systems.

The algorithm, Efficient Large-Scale Stereo (ELAS) [12], is

the fastest CPU algorithm w.r.t. resolution on the Middlebury

dataset [13] and one of the most accurate non-global meth-

ods. ELAS is attractive since it very efficiently implements

a slanted plane prior while its dense depth estimation is

fully decomposable over all pixels and, hence, suitable for

parallel processing. Unfortunately, the intermediate step, i.e.

estimation of coarse scene geometry through the triangulation

of support points, is a very iterative, sequential and conditional

process with an unpredictable memory access pattern; making

it difficult to accelerate on an FPGA.

To overcome this challenge, we propose the first stereo

implementation which collaboratively utilizes both compo-

nents of an embedded CPU-FPGA System on Chip (SoC)

for the purpose of algorithm acceleration1. Other published

low-power systems achieve good frame rates by limiting the

algorithms they implement to those that can be fully processed

by the FPGA, even when closely coupled processors are

available e.g. [2], [1]. We, instead, seek to take advantage of

both available components to efficiently accelerate the more

complicated/accurate ELAS algorithm and demonstrate its

feasibility for low-power systems. Accomplishing this involves

offloading the different stages of the processing pipeline onto

the component that best suits the computations involved. We

discuss the rational behind the chosen partitioning and explain

1Source code available at https://github.com/torrvision/ELAS SoC

http://arxiv.org/abs/1802.07210v1
https://github.com/torrvision/ELAS_SoC


2

Fig. 1. ELAS Overview: Extract a set of support points from gradient images that are then used to establish priors for the dense matching stage.

why its the most suitable, describe the key traits required in

the design of efficient accelerators as well as the changes made

to best adapt the algorithm to the platform. Tested on both the

KITTI and New Tsukuba data sets, our system outperforms

the frame rate of the original by ∼ 15− 30× with a rate of

47fps (1242×375 images) and, in addition, improves upon its

accuracy - all the while with under 4W of power consumption.

II. RELATED WORK

The pursuit of real-time stereo began in the 1980’s [14].

Initial implementations of dense stereo minimized relatively

simple matching costs, e.g. Sum of Absolute Differences

(SAD) or Sum of Squared Differences (SSD), between left

and right image patches evaluated along the epipolar lines.

Kayaalp and Eckman [15] were one of the first to present such

a system, capable of estimating disparity over a 64 disparity

range in about one second for 256× 256 images.

The first system capable of at least 30 fps - on 200× 200

images with a 23 pixel disparity range - was on a custom

platform built from off-the-shelf components by Kanade et

al. [16], [17]. Similarly to [15], they used a Sum of Sum of

Absolute Difference (SSAD) but rather than summing over the

different color channels, they summed over the six different

cameras of their multi-camera system.

The first FPGA implementation of dense stereo matching

used 16 Xilinx 4025 FPGAs [18]. It relied on the Census

Transform (CT) [19] and computed 24 disparity levels over

320 × 240 images at 42 fps. Over about the next decade,

FPGAs were repeatedly demonstrated as suitable platforms

for dense real-time stereo, however they mostly implemented

only variations of the SAD, SSAD, zero-mean SAD (ZSAD)

and CT with additional noise suppressing post-processing

steps [20], [21], [22], [23], [24]. Hence, the accuracy of such

approaches was not typically comparable with state-of-the-art

models which were formulated in global energy minimization

frameworks [13], [25], [26].

Notable improvements in accuracy of FPGA implemen-

tations were made by incorporating Semi-Global Matching

(SGM) [11]. For instance, Gehrig et al. [27] used a 3× 3

window ZSAD along a 64 disparity range and minimized over

8 separate directions to run at 27 fps. Banz et al. [8] proposed

a similar solution, but only aggregated costs over 4 directions

with a rank transform [19]. SGM’s larger scope managed to

partly bridge the accuracy gap between strictly local operators

and global optimization methods whilst remaining suitable

for acceleration. However, SGM still has disadvantages such

as large memory requirements and a fronto-parallel bias.

Alternative recent approaches have shown some improvements

in both frame rate and accuracy [28], [29], [30], [31], [9], [10],

[32], however, they still lack the accuracy of SGM.

During the same period (2000-2010), graphics processing

units (GPU) began to appear as alternative platforms for

algorithm acceleration [33], [34], [35]. Although they offered

speedup for sliding window algorithms such as local stereo,

GPUs typically under-performed and consumed more power

than their FPGA counterparts [7]. They were therefore a less

favorable option for truly embedded and real-time systems.

Currently, the fastest CPU stereo algorithm on the Mid-

dlebury dataset [13], normalized w.r.t. resolution, is Efficient

Large-Area Stereo [12]. It competes with SGM in accuracy,

but its diverse computational nature has it overlooked in

favor of other fully FPGA implementable algorithms. With

new closely coupled CPU/FPGA System-on-Chip devices,

however, it stands to benefit a lot in terms of acceleration.

III. PRELIMINARIES

A. Original ELAS algorithm

The Efficient Large-Scale Stereo Matching (ELAS) algo-

rithm [12] relies on the assumption that not all correspon-

dences are equally difficult. It first establishes a set of sparse

correspondences whose estimation is simpler and at the same

time comes with a higher degree of confidence. These cor-

respondences provide a coarse approximation of the scene

geometry and are used to define a slanted plane prior which

guides the dense matching stage.

An overview of the ELAS is shown in Fig. 1. To obtain

the set of sparse but confident correspondences (the “support

points”), the stereo pair first passes through a SAD matching

stage over the horizontal and vertical gradients of the im-

ages, Fig. 1(b-d). The resulting set is sparse as only pixels

with sufficiently unambiguous disparity values are kept. This

criterion is measured by comparing the distance between the

first and second minima of the SAD evaluations across the

disparity range. The results from this stage then undergo a

further filtering procedure, Fig. 1(e), to remove implausible

and redundant values which would respectively corrupt or

unnecessarily complicate the coarse 3D representation. This

filtering process compares the sparse values to neighbors

within a window region to ensure that they are consistent and

removes identical values along the same row or column.

The set of support points is then used to guide the dense

stereo matching stage (Fig. 1(h)) in two separate ways. First,

the set of support points is used to define a slanted plane

prior which guides the dense matching stage. To this end,

ELAS uses Delaunay triangulation to construct a mesh which

approximates coarse scene geometry (Fig. 1(g)). Second, this



3

27

27

27

30

30

30

26

26

26

26

26

34

35

35

30

27

34

35

26

30

27

33

34

26

25

28

29

31

35

36

Fig. 2. Pooling support points within a sub-region to create a grid vector.
The sparse set of correspondences in every given grid-region of an image are
pooled together to create a characteristic search vector. This search vector is
expanded to include immediate neighbors of included support points (±1)

slanted plane prior is used to limit the disparity values evalu-

ated during the dense matching stage. This range is expanded

to include immediately neighboring values (±1), which gives

an algorithm a chance to recover in case the initial mesh is

incorrect (Fig. 2 and Fig. 1(f)).

Following the dense matching stage, ELAS uses post-

processing (Fig. 1(i)) to invalidate occluded pixels and fur-

ther improves smoothness across the image. Although post-

processing plays an important role in obtaining an accurate

final result, it is not a core part of the algorithm or unique to

it, and therefore ignored.

B. Platform

We use Xilinx’s ZC706 development board with the

XC7Z045 SoC; this is a heterogeneous chip that incorporates

an ARM Cortex A9 processor operating at 800MHz and a

28nm Kintex series FPGA on the same die. The collocation

of the two components ultimately serves to increase the overall

throughput of the system as it allows for rapid and efficient

exchange of data. The resources available on the FPGA

include: 218600 Look Up Tables (LUT), 437200 Flip Flops

(FF), 900 DSP48 Blocks, 1090 18K Block RAMs (BRAM).

C. High level synthesis

Vivado High Level Synthesis (VHLS) provides a higher

abstraction approach to FPGA block implementation by syn-

thesizing designs described in a high level language such

a C/C++ into equivalent hardware descriptions. A deep un-

derstanding of the underlying hardware architecture is still

required, but it alleviates the burden of adopting a low level

hardware description languages such as VHLD/Verilog. By

abstracting fine grained, less critical details of the design,

VHLS accelerates and facilitates development with FPGAs.

Although accelerators designed with this higher abstraction

approach may not be as optimized or as resource efficient as

those designed with low level hardware description languages,

the ability to deploy, modify and test them much more rapidly

is a reasonable compromise. Hence, we implemented all

accelerators using VHLS.

IV. SYSTEM OVERVIEW

Fig. 3 shows the overall system implemented on Zynq

SoC platform. Determining which parts of the algorithm are

Fig. 3. Overview of System-on-Chip (SoC) implementation. Compute-
intensive tasks are offloaded to FPGA accelerators whereas condi-
tional/sequential tasks are handled by ARM CPU. Communication between
CPU and FPGA is handled by Direct Memory Access blocks in the FPGA.

offloaded onto dedicated accelerators and which are proceed

on the ARM CPU is a twofold process. First, the entire

algorithm’s CPU runtime is profiled to get an estimate of the

time spent in each function. The main bottlenecks are then

identified and the algorithm is mapped and broken down into

its main components. In the subsequent step, the computational

nature of the different components are evaluated and matched

to the most appropriate component for processing.

a) FPGA: FPGA accelerators are severely hampered if

they require communicating with external memory or if they

contain many divergent datapaths through them. However, they

excel at performing a variety of operations, simultaneously, on

a large range of data. As such, functions that process blocks

of data with well defined, relatively local, memory access

patterns and limited amounts of conditional branching can

benefit tremendously from such acceleration.

In ELAS, the functions responsible for support point extrac-

tion, filtering and block matching fit such criteria. Therefore,

as denoted by the green blocks in Fig. 3, these are offloaded

onto dedicated FPGA accelerators. These accelerators can

either have data transferred in-between them directly (Sparse

→ Filtering) or to and from the the RAM through Direct

Memory Access (DMA) blocks in the FPGA (programmed

by the CPU). The accelerators process the data in-stream -

only storing small portions of the overall stream (cf., Sec. V)

and outputting data at the same rate at which it is received.

This processing style best compliments the raster pixel readout

of modern image sensors and allows for top level pipelining

in between successive FPGA accelerators.

b) ARM CPU: Functions with very unpredictable mem-

ory access patterns as well as those with a high amount of

conditional branching are very ill suited for FPGA accelera-

tion. These, instead, benefit more from the ARM CPU’s faster

processing speeds, its sequential processing style (invariant

to branching) and its equal, but longer, access to memory

(disregarding cache hit/misses).

As denoted by the yellow blocks in Fig. 3, the ELAS

processes that are handled in this manner are the Delaunay



4

Fig. 4. Memory requirements for sliding window operations in FPGA
accelerators. Line buffers (blue) are used to store large amounts of data but
can used to provide a single value per clock cycle. Window buffers (green)
are local registers used to store immediately required data.

triangulation as well as the remapping of the slanted plane

priors into disparity priors. Grid vector extraction and one-hot

encoding (cf., Sec. VI) are also done on the ARM. Although

grid vector extraction would appear to be a candidate for

FPGA acceleration as it “pools” values within a local memory

region with a window like operation, as shown in Fig. 2, in

reality, as it only operates on a single value at a time, it benefits

more from the faster clock of ARM.

V. KEY ACCELERATOR DESIGN TRAITS

A. FPGA memory management

To achieve the required parallelism within the FPGA blocks,

all the necessary data for a set of computations must be

available on the same clock cycle as those computations

are to occur. Memory management, therefore, has the largest

impact on accelerator throughput and latency. Fig. 4 shows the

combination of block RAMs and local memory that are used as

the core components for this purpose. Block RAMs (BRAMs)

are the most resource efficient stores of large quantities of

data. In the accelerators, they behave as line buffers, storing

previously received pixel information into the FPGA fabric.

For a given W ×W matching window, each image’s pixel data

is collected by a set of 2×W line buffers. On every clock

cycle, each line buffer shifts its contents at a given index to the

line buffer above it and a new pixel is read into the free space

created at that index of the bottom-most buffer. Similarly, the

data that was in the topmost buffer is shifted out as it is no

longer required - only a fraction of the overall image data is

ever held in the FPGA.

Each BRAM, however, is only able to read and write one

value per clock cycle. Therefore, a set of line buffers only

supplies one column of pixel data per clock cycle. Most com-

putations in the accelerators, however, operate over windows

of pixels and therefore this alone is insufficient in meeting

the memory requirements for a high throughput/low latency

design. Instead, an additional W ×W size “window” buffer is

necessary (Fig. 4). As it consists of local registers within the

FPGA block which are all instantaneously accessible, this is

resource expensive. On every clock cycle, the contents of the

window are updated by shifting all columns once to the left.

The rightmost column is read in from the values stored in the

line buffers (including the latest pixel value).

By combining the use of storage elements in this manner,

we efficiently achieve access to all the necessary data on the

same clock cycle on which it is used. No additional clock

cycles need to be spent on memory access.

B. Pipelining

Although VHLS handles timing considerations and data

flow control of FPGA accelerators, the throughput and latency

it achieves depends on the propagation delays within the

accelerators as well as the desired amount of pipelining and

overall clock frequency.

When maximizing the throughput of an accelerator, pipelin-

ing is necessary when its total internal propagation delay

exceeds the clock period to which it is constrained (pixel

read in/out rate). By introducing pipelining, the accelerator

is able to meet the clock frequency constraint by dividing

and spreading its operation over multiple clock cycles. Each

sub-stage is separated from the next with flip flops that

store intermediate values and therefore pipelining improves

utilization. Ultimately, however, it results in the accelerator

being shared across a set of inputs as each sub-stage processes

a new input on every clock cycle - a larger amount of data is

being simultaneously acted upon.

Other than the flip flop requirement, the trade-off with

pipelining is that the number of clock cycles between first

input and output increases by the amount of pipeline stages

and the propagation delay experienced by a single pixel is

longer as each sub-stage’s delay is extended to that of the

longest sub-stage. In image processing, however, as large

quantities of pixel data pass through the accelerators, the

latency introduced by pipelining is not only negligible, but

significantly outweighed by the ability to output data at a much

faster rate. It plays a significant role in achieving the desired

frame rate in our design.

VI. PLATFORM CONSCIOUS ALGORITHM CHANGES

A. Feature selection

Efficient implementation of original ELAS uses SIMD

accelerators with fixed widths of 16 bytes for feature extrac-

tion and matching. Such an implementation, however, lacks

flexibility since the number of pixels it can process is limited

and must be in multiples of 16 (for 8 bits). The result is that

for a given W ×W window, only a subset of pixels contained

within it are used for matching purposes.

Due to our memory management, all pixel data within a

window is available and therefore no speed penalty is incurred

by using it (Fig 4). It also improves the accuracy since we use

a larger number of pixels in the matching process. We use the

Census Transform descriptors with Hamming Distance instead

of the SAD as it achieves illumination invariant matching

without the need for an additional pre-processing step (Sobel

filter Fig. 1(b)).

Even if the pre-processing is discounted, the SAD generally

requires more resources than the CT. As shown in Fig. 5,

unlike the CT that reuses previously extracted features, the



5

Fig. 5. Comparison of Extraction and Matching Implementation with Census
Transform and Sum of Absolute Differences

SADs must be recomputed every time. Also, SAD implemen-

tations that achieve similar throughput, such as the one in [36],

require an additional window buffer to store previous column

SAD computations (bottom of Fig. 5). Thus the resource

requirement is greater due to both the greater number of

computations as well as the greater need for memory.

These changes result in a feature descriptor that is shorter

in bit length (81/25 compared to the original 512/128), while

containing information about larger pixel neighborhood than

ELAS’s CPU implementation.

B. Measuring ambiguity

The support point extraction is done slightly differently to

the original algorithm. We replace the original criteria which

assumes a match is unambiguous if

m1

m2

≤ 0.9, (1)

where m1 and m2 are the first and second mimima respectively.

This is equivalent to thresholding m1

m1 ≤ 0.9m2 = Terr(m2), (2)

However, implementing such comparison on an FPGA requires

a number of DSP blocks. Hence we approximate the threshold

Terr(m2) with a shift-sum

Terr(m2) = 0.9m2 ≈
m2

2
+

m2

4
+

m2

8
+

m2

32
= 0.90625m2. (3)

This eliminates the need for DSP blocks as shift-summing

is fully accomplished within the LUT fabric of the FPGA.

Value RedundantValue Not RedundantIdentical Value

Fig. 6. One dimensional simplification of redundancy verification (A) Search-
ing both forwards and backwards propagates redundancy into the value’s non-
existence (B) Searching strictly backwards retains the value at the desired
frequency

C. Filtering support points

The original algorithm uses both past and future values

in the data stream for redundancy check. As shown in the

simplified 1-D example of Fig. 6(A), the shared values used to

flag redundancy are often made redundant by instances further

ahead. Instead, the “filter” FPGA accelerator only relies on

past values when determining redundancy. This ensures the

shared values are less frequent rather than non-existent.

D. Data Reduction

To accommodate for the static bit-width of accelerator

ports and to minimize the data transferred to the FPGA, we

introduce new data reduction steps to ELAS (on the ARM).

Referring to Fig. 3, the first one-hot encodes the grid vectors

from a variable length byte array into a statically sized bitwise

representation. The second converts the result of the Delaunay

Triangulation from a variable mesh of triangles into a static,

input image sized, matrix of disparity priors.

VII. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our approach, we pro-

vide a detailed evaluation across differently parameterized sets

of implementations and evaluate them on both the KITTI and

New Tsukuba data sets.

As FPGA accelerators can not be easily reconfigured for

different image resolutions during testing, we only use 310

of the 400 KITTI image pairs that have the same 1242×375

resolution. The New Tsukuba consists of 1800 images with

resolution of 640×480, of which we use the provided subset

of 200 image-pairs.

A. Accuracy

We begin by verifying how the accuracy of the FPGA

accelerated version of ELAS, following the modifications

made to adapt it to the SoC platform, compares to that of the

original algorithm. To this end, we use the standard accuracy

metric from the KITTI benchmark which measures the relative

number of estimated disparities which differ from ground truth

by both an absolute amount of at least 3 and a relative one of

at least 5%.

To ensure a fair comparison, the number of support points

used to establish the prior should be approximately the same.

As not all pixels are considered for support point extraction



6

in the original algorithm, we find that this occurs when we

use 1
14

-th of the number of total extracted support points

in our method. We also use the same window sizes for

both matching stages, i.e. 9× 9 and 5× 5, respectively. As

previously explained, accuracy is measured without post-

processing/refinement as these processes aren’t unique to

ELAS and are more susceptible to dataset “fine tuning”. With

these parameters, the original implementation tested without

post-processing over the same image set, obtains an average er-

ror of 17.9% while our implementation achieves an improved

16.5%. With many other configurations tested, Table I, we

find that the embedded version is generally more accurate,

except when window sizes are made too small or when support

points are overly sub-sampled. Unlike the hard-coded 9× 9

and 5× 5 windows of the original, we are able to quickly

configure different window sizes to vary accuracy without

any impact on frame-rate. As larger windows provide more

information in matching, they also result in more accurate

depth maps. However this only holds up to a certain size;

eventually the inherent fronto-parallel bias of square matching

windows begins negatively impact results.

B. Per-frame processing time

Fig. 7 (left axes) illustrates the proportion of the overall

processing time of the ARM against that of the FPGA. The

FPGA portion is inclusive of the time spent transferring data

by the DMAs. Additionally, the results are reported across

different support point densities which we regulate through

down sampling. As shown, although the time spent on the

ARM is proportional to the number of support points used

and shortens significantly with down sampling, it nonetheless

dominates the overall processing time.

In contrast, the combined processing time of the FPGA

accelerators is mostly unaffected by changes in parameters

such as matching window size, disparity range or the number

of support points. As they have a constant throughput of

1 pixel/clock cycle, their processing time is, instead, pre-

dominantly a function image resolution. On average, it takes

only 4.84± .02ms for the KITTI images (1242× 375px) and

3.19± .02ms on the New Tsukuba (640×480px). The 1.51×

difference corresponds exactly to the pixel ratio difference.

The line plot in Fig. 7 (right axes) shows the error per-

centage vs. the number of support points controlled by down-

sampling. Whilst slightly unintuitive, the best accuracy is not

achieved with the largest number of support points (peak

at 1
8

of the support points). This is likely due to the noisy

nature of sparse correspondence matching. Following this

peak, accuracy gradually decreases with reduced number of

support points as the resulting planar surfaces become less

accurate coarse approximations of scene geometry.

Interestingly, although the FPGA accelerators run at con-

stant time, the matching window size of the support point

extraction stage is negatively correlated with overall frame

rate. Larger windows do incur a greater initial latency to ac-

count for the additionally used line buffers, but this difference

is negligible (evidenced by invariance of the frame rate to

the window size of dense matching) and can not account for

E
rr

o
r 

%

Fraction of Support Points Used (1/2
x
)

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

400

450
FPGA

ARM

Fig. 7. Processing time and related accuracy w.r.t down sampling

this difference. Instead, the frame rate reduction is actually

due to the increased number of support points resulting from

the extraction using larger matching windows - this impacts

the ARM’s workload. Therefore, the main bottleneck is the

Delaunay Triangulation which is in stark contrast to the one

reported in the original CPU implementation.

C. Power and resource consumption

The high throughput capability of accelerators is limited

by the number of circuit elements available within the FPGA

fabric. In order to report this “resource utilization” (Table I),

we split it into the three main types of blocks (we exclude DSP

blocks as they are negligibly used). As expected, the LUTs,

used for the combinational logic and instantaneous memory,

are the most predominantly utilized and this amount depends

strongly on the window size of dense matching. The flip flops,

utilized primarily for pipelining, share a similar dependency,

but to a lesser extent. The BRAMs, used as line buffers are

purely a function of the cumulative image rows required for a

given set of windows.

One of the most important advantages of the proposed

implementation is the power efficient computing that it enables

(cf., last two columns of Table I). The ARM processor, running

at a steady 800 Mhz, accounts for a constant but majority share

of the power. In contrast, the power consumed by the FPGA is

much more controlled and directly proportional to the portion

of FPGA logic that is being utilized. Altogether, however, the

results highlight that the implementation is not only capable

of running the algorithm in real-time, it succeeds in doing

this with under 3W of power (in contrast to powerful desktop

CPUs which typically require > 100W).

D. Throughput

To further increase frame rate, we explore operating over

multiple images simultaneously by taking advantage of the



7

TABLE I
IMPACT OF WINDOW SIZES USED DURING MATCHING ON FRAME RATE, ACCURACY AND RESOURCE UTILIZATION

Data Set
Window

Size
Window

Size
CPU ELAS 1/8 1/32 Resource Utilization [%] Power (Watts)

FPS Error % FPS Error % FPS Error % LUT FF BRAM ARM FPGA

KITTI
1242×375

7×7
3×3

1.5 - 3 17.9

17.3 18.4 29.2 23.2 22.0 14.5 10.5 1.70 0.91
5×5 17.4 16.5 29.2 21.7 24.2 15.3 10.8 1.70 1.06
7×7 17.4 15.8 29.2 21.4 27.2 16.7 11.2 1.70 1.08

9×9
3×3 12.5 17.2 24.5 20.0 26.2 17.1 10.8 1.70 1.00
5×5 12.4 14.5 24.5 17.7 28.5 17.9 11.2 1.70 1.17
7×7 12.3 13.7 24.3 17.0 31.7 19.3 11.6 1.70 1.16

11×11
3×3 10.5 17.6 22.3 19.5 32.0 20.4 11.2 1.70 1.08
5×5 10.5 14.5 22.3 16.6 34.0 21.2 11.6 1.70 1.20
7×7 10.5 13.6 22.3 15.7 37.3 22.6 11.9 1.70 1.21

13×13
3×3 9.4 18.2 21.0 19.4 38.5 24.2 11.6 1.70 1.12
5×5 9.5 14.9 21.0 16.3 40.4 25.1 11.9 1.70 1.27
7×7 9.5 13.9 21.0 15.4 43.5 26.5 12.3 1.70 1.28

Tsukuba
640×480

9×9 5×5
N/A 6.4

17.6 6.8 36.2 6.4 28.1 17.0 9.7 1.70 1.00
11×11 7×7 14.8 6.4 32.9 5.9 37.4 21.7 10.5 1.70 1.23

TABLE II
TIME BREAKDOWNS

Cones (900 x 750)
Time (ms)

i7-only (orig.)
Time (ms)

ARM+FPGA
Time (ms)
i7+FPGA

Support Points 118 3.5 3.5

Triangulation 7 84.42 7

Matching 359 3.5 3.5

additional core of the ARM and separate but identical ac-

celerators in the FPGA. This effectively doubles the system

and therefore the resources and power used by the FPGA

double (minus some shared overhead). Conversely, the ARM’s

power consumption remains the same, at 1.7W. For example,

a dual system with (9× 9) and (5× 5) matching windows

utilizes 56.8% of LUTs, 35% of FFs, 22.8% of BRAMs

and consumes 3.67W. The most accurate configuration using

this multi-threaded/multi-accelerator approach runs at 23.7fps

(3.74W). A faster version, whose accuracy is poorer but still

better than the original CPU versions runs at 47.0fps (3.67W).

VIII. COMPARISON & DISCUSSION

Comparing these results to what was achieved in the original

paper, it is clear that parallelizing key parts of the algorithm

has successfully led to significantly faster - up to 30× -

real-time frame-rates. Despite the achievement, the results

also reveal some of ELAS’s weaknesses for power-limited

platforms. From Table II, where the time breakdown for

each stage is compared across systems, we see how the SoC

manages 100× throughput increase for both matching stages

even though it processes more data, i.e. all pixels considered

for support point and full matching windows. However, with

the low-power CPU paling in performance compared to its

desktop counterpart, the triangulation procedure - seemingly

insignificant in the original paper - is > 12 times longer and

dominates the processing time on the SoC. Thus, although

ELAS is exemplified as one of the fastest stereo algorithm,

its dependence on a very sequential procedure makes it also

dependent on a powerful processor to achieve maximal speed

up. In the last column of Table II, we show the processing

times which one could obtain if an SoC, combining the same

FPGA with an Intel Core i7 CPU instead of the ARM, were

used to accelerate the algorithm with the same proposed

approach. On such a platform, the frame rate of ELAS exceeds

70fps, but power consumption would also exceed 100W.

In terms of accuracy, the improvements over the original

can be attributed to the full matching windows/CT as opposed

to the randomly sub-sampled SAD of the original. These sub-

sampled windows were needed in the original to speed up the

CPU processing time. In contrast, with the FPGA accelerators,

not only is window matching speed independent of the number

of pixels considered, but full windows result in a more efficient

use of resources. As a corollary, unlike CPU ELAS whose

runtime is coupled to its tailored windows, our embedded

version can accommodate various window sizes and disparity

ranges without being concerned about the impact on latency.

We compare the performance of our system to the fastest

implementation currently reported on the KITTI benchmark,

referred to as “CSCT+SGM+MF” (CSM) [37] and which,

at its core, implements SGM - the competing algorithm in

embedded, real-time systems. It reports an 8.24% error rate

at 156 fps on a 250W NVIDIA Titan X. As CSM’s result

incorporates smoothing/refinement both inherently through

SGM and through an additional median filter, we pass the

results of our most accurate configuration through a median

filter for the sake of comparison. With only this one additional

post-processing step, we obtain a new error rate of 9.52% -

already slightly better than the accuracy ELAS reports on the

KITTI benchmark following all post-processing/refinement.

Although CSM may still be marginally more accurate with

a faster frame rate, it requires substantially more power at

250W. This is equivalent to a per Watt frame rate of 0.62fps/W.

In their original paper, the authors also attempt a more power

efficient implementation (same accuracy) on a mobile NVIDIA

Tegra X1 GPU (10W). After scaling their results to the KITTI

resolution, this more power efficient system manages only

13.8fps with a resulting efficiency of 1.38fps/W. Our system,

in contrast, offers a 23.7fps frame rate with a corresponding

6.34fps/W efficiency. This is a 10× improvement over the

faster Titan X system and 5× over the slower Tegra X1 one.

The FPGA accelerators in this system were described in

C++ and then converted into logic with VHLS. In our experi-

ence, although the tool did eliminate the need for writing low-



8

level VHDL/Verilog, it still relied heavily on the user’s deep

knowledge of the target circuit. The original algorithm had

to be completely re-engineered to comply with the hardware

framework. As well as motivating the previously described

modifications, this included adhering to a regular, timing-strict

processing chain, minimizing any inter-process dependencies

and eliminating conditional operations/branches/exceptions.

IX. CONCLUSION

In this work, we have disassembled and reconstructed the

ELAS algorithm onto an ARM + FPGA SoC with the purpose

of evaluating its suitability for low-power, real-time embedded

systems. By taking advantage of the immense parallelism

available with FPGAs and by better adapting the algorithm for

it, we not only successfully accelerate the frame rate by up

to 30×, but we also demonstrate an improvement in accuracy.

All this is achieved with under 4W of power which makes

it 5− 10 more efficient, on a frame rate per Watt basis, than

competing algorithms on KITTI.

Through the iterative process of adapting the algorithm to

the platform as well the starkly different resulting processing

time breakdown we obtained, fundamental principles were

gleaned for the future design of accurate, but ultimately real-

world applicable, algorithms. Specifically, with parallelism

being of paramount importance, any strictly sequential or

iterative processes must be kept to a minimum as these will

cause severe bottlenecks. Their acceleration depends on faster

processors, and as CPU frequency is directly proportional to

power consumption, this quickly incurs greater power require-

ments that are unrealistic in space, aerial or mobile robotics.

Conversely, accelerators excel at simultaneously processing

vast amounts of data as long as it is available and effectively

managed in the fabric of the FPGA. Therefore, compromises

that may have made sense for a strictly CPU system, such as

sacrificing accuracy for speed by computing with fewer pixels,

are no longer necessary and should be entirely avoided.

Finally, although the newly developed high-level design

tools by Xilinx do indeed facilitate the access, speed and

and transportability of designing on FPGAs, one must be still

possess a strong understanding of hardware design in order to

efficiently implement accelerators with them.

REFERENCES

[1] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive avoidance
using embedded stereo vision for mav flight,” in ICRA, 2015.

[2] G. Camellini, M. Felisa, P. Medici, P. Zani, F. Gregoretti, C. Passerone,
and R. Passerone, “3DV-An embedded, dense stereovision-based depth
mapping system,” in Intelligent Vehicles Symposium Proceedings, 2014.

[3] N. A. Zainuddin, Y. M. Mustafah, Y. A. M. Shawgi, and N. K.
A. M. Rashid, “Autonomous navigation of mobile robot using kinect
sensor,” in International Conference on Computer and Communication
Engineering, 2014.

[4] C. Lehnert, I. Sa, C. McCool, B. Upcroft, and T. Perez, “Sweet pepper
pose detection and grasping for automated crop harvesting,” in ICRA,
2016.

[5] S. L. Hicks, I. Wilson, L. Muhammed, J. Worsfold, S. M. Downes,
and C. Kennard, “A Depth-Based Head-Mounted Visual Display to Aid
Navigation in Partially Sighted Individuals,” PLoS ONE, 2013.

[6] O. Miksik, V. Vineet, M. Lidegaard, R. Prasaath, M. Nießner,
S. Golodetz, S. L. Hicks, P. Perez, S. Izadi, and P. H. S. Torr, “The
semantic paintbrush: Interactive 3d mapping and recognition in large
outdoor spaces,” in ACM CHI, 2015.

[7] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and
energy comparison of fpgas, gpus, and multicores for sliding-window
applications,” in FPGA, 2012.

[8] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-time
stereo vision system using semi-global matching disparity estimation:
Architecture and fpga-implementation,” in SAMOS, 2010.

[9] M. Pérez-Patricio, A. Aguilar-González, M. Arias-Estrada, H.-R.
Hernandez-de Leon, J.-L. Camas-Anzueto, and J. de Jesús Osuna-
Coutiño, “An fpga stereo matching unit based on fuzzy logic,” Micro-
processors and Microsystems, 2016.

[10] G. Cocorullo, P. Corsonello, F. Frustaci, and S. Perri, “An efficient
hardware-oriented stereo matching algorithm,” Microprocessors and

Microsystems, 2016.
[11] H. Hirschmuller, “Accurate and efficient stereo processing by semi-

global matching and mutual information,” in CVPR, 2005.
[12] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo

matching,” in ACCV, 2010.
[13] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for

stereo matching,” in CVPR, 2007.
[14] M. Drumheller and T. Poggio, “On parallel stereo,” in ICRA, 1986.
[15] A. E. Kayaalp and J. L. Eckman, “Near real-time stereo range detection

using a pipeline architecture,” IEEE Transactions on Systems, Man, and

Cybernetics, 1990.
[16] T. Kanade, H. Kano, S. Kimura, A. Yoshida, and K. Oda, “Development

of a video-rate stereo machine,” in IROS, 1995.
[17] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo

machine for video-rate dense depth mapping and its new applications,”
in CVPR, 1996.

[18] J. Woodfill and B. Von Herzen, “Real-time stereo vision on the parts
reconfigurable computer,” in FCCM, 1997.

[19] R. Zabih and J. Woodfill, “Non-parametric local transforms for comput-
ing visual correspondence,” in ECCV, 1994.

[20] M. Hariyama, Y. Kobayashi, H. Sasaki, and M. Kameyama, “Fpga im-
plementation of a stereo matching processor based on window-parallel-
and-pixel-parallel architecture,” IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, 2005.
[21] S. Perri, D. Colonna, P. Zicari, and P. Corsonello, “Sad-based stereo

matching circuit for fpgas,” in Electronics, Circuits and Systems, 2006.
[22] C. Cuadrado, A. Zuloaga, J. L. Martin, J. Laizaro, and J. Jimenez, “Real-

time stereo vision processing system in a fpga,” in IECON, 2006.
[23] C. Georgoulas, L. Kotoulas, G. C. Sirakoulis, I. Andreadis, and

A. Gasteratos, “Real-time disparity map computation module,” Micro-

processors and Microsystems, 2008.
[24] K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vi-

sion,” CVIU, 2010.
[25] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms,” IJCV, 2002.
[26] ——, “High-accuracy stereo depth maps using structured light,” in

CVPR, 2003.
[27] S. K. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo

vision engine using semi-global matching,” in ICVS, 2009.
[28] C. Georgoulas and I. Andreadis, “A real-time fuzzy hardware structure

for disparity map computation,” Journal of Real-Time Image Processing,
2011.

[29] M. Werner, B. Stabernack, and C. Riechert, “Hardware implementation
of a full hd real-time disparity estimation algorithm,” IEEE Transactions
on Consumer Electronics, 2014.

[30] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu, “Real-time high-
quality stereo vision system in fpga,” IEEE Transactions on Circuits
and Systems for Video Technology, 2015.

[31] M. Pérez-Patricio and A. Aguilar-González, “Fpga implementation of an
efficient similarity-based adaptive window algorithm for real-time stereo
matching,” Journal of Real-Time Image Processing, 2015.

[32] Y. Li, K. Huang, and L. Claesen, “Soc and fpga oriented high-quality
stereo vision system,” in FPL, 2016.

[33] M. Gong and Y.-H. Yang, “Near real-time reliable stereo matching using
programmable graphics hardware,” in CVPR, 2005.

[34] J. Lu, G. Lafruit, and F. Catthoor, “Fast variable center-biased window-
ing for high-speed stereo on programmable graphics hardware,” in ICIP,
2007.

[35] I. Ernst and H. Hirschmüller, “Mutual information based semi-global
stereo matching on the gpu,” in ISVC, 2008.

[36] O. Rahnama, A. Makarov, and P. H. S. Torr, “Real-time depth processing
for embedded platforms,” in Proceedings of the SPIE, 2017.

[37] D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C. Moure,
and A. M. López, “Embedded real-time stereo estimation via semi-global
matching on the gpu,” Procedia Computer Science, 2016.


	I Introduction
	II Related work
	III Preliminaries
	III-A Original ELAS algorithm
	III-B Platform
	III-C High level synthesis

	IV System Overview
	V Key Accelerator Design Traits
	V-A FPGA memory management
	V-B Pipelining

	VI Platform Conscious Algorithm Changes
	VI-A Feature selection
	VI-B Measuring ambiguity
	VI-C Filtering support points
	VI-D Data Reduction

	VII Experimental Results
	VII-A Accuracy
	VII-B Per-frame processing time
	VII-C Power and resource consumption
	VII-D Throughput

	VIII Comparison & Discussion
	IX Conclusion
	References

