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Abstract
We propose a parallel and distributed algorithm for solving discrete labeling prob-

lems in large scale random fields. Our approach is motivated by the following observa-
tions: i) very large scale image and video processing problems, such as labeling dozens
of million pixels with thousands of labels, are routinely faced in many application do-
mains; ii) the computational complexity of the current state-of-the-art inference algo-
rithms makes them impractical to solve such large scale problems; iii) modern parallel
and distributed systems provide high computation power at low cost. At the core of our
algorithm is a tree-based decomposition of the original optimization problem which is
solved using a non convex form of the method of alternating direction method of mul-
tipliers (ADMM). This allows efficient parallel solving of resulting sub-problems. We
evaluate the efficiency and accuracy offered by our algorithm on several benchmark low-
level vision problems, on both CPU and Nvidia GPU. We consistently achieve a factor
of speed-up compared to dual decomposition (DD) approach and other ADMM-based
approaches.

1 Introduction
Probabilistic graphical models such as the Markov Random Fields (MRF) and Conditional
Random Fields (CRF) [8], and related energy-minimization based techniques have become
ubiquitous in computer vision and image processing. They have been proven especially use-
ful to solve a variety of important, high-dimensional, discrete inference problems. Examples
include per-pixel object labelling, image denoising, image inpainting, disparity and optical
flow estimation, etc. [15, 18, 24]. Their use nonetheless implies computational costs that are
often not compatible with very large scale problems met today in many applications. This
concern is at the heart of present work.

As a result of more than two decades of impressive progress, a number of sophisticated
algorithms have been proposed to solve, exactly or approximately, the combinatorial opti-
mization problems associated to such approaches. However, their computation and/or mem-
ory complexity depends often dramatically on the size of search space (e.g., the number of
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pixels raised to the power of the number of discrete labels) and on the structure of the energy
(e.g., the number of neighbours per pixel). As a consequence, algorithms that work well on
smaller benchmarks can become impractical on very large scale problems, such as labeling
millions of pixels with thousands of labels.

While recent advances in combinatorial optimization for computer vision have focused
on important guarantees of convergence, this is not sufficient to achieve desired efficiency on
large scale problems. In particular, given limited number of cpu cores, speed limitations of
hard-drives and high costs of shared memory systems, massively parallel processors present
an appealing computing paradigm. Thus, it becomes of paramount importance that new
optimization algorithms for random fields can run in a parallel and distributed fashion on
platforms such as Amazon EC2 [1] or Nvidia GPUs [12].

Parallelization has been considered for belief propagation [14], graph cuts [17, 20, 21],
linear programming and dual decomposition [7]. Graph-cut is generally solved by augmenting-
path or push-relabel algorithms. The former are generally unsuited for parallel process-
ing [4]. Push-relabel algorithms involve more local operations, but it has been shown [20]
that their parallel implementation generally oscillates between two solutions and takes nu-
merous iterations to converge. Loopy belief propagation [25], on the other hand, involves
local updates, but does not come with convergence guarantees in general.

The approaches based on linear programming (LP) relaxation appear to be, by construc-
tion, the best suited to parallel and distributed treatment. One class of such approaches, the
dual decomposition [7], solves the Lagrangean relaxation of the integer linear programming
(ILP) problem and decomposes the large and difficult problem to solve into a set of smaller
sub-problems that can be easily solved in parallel, with minimal communication through
a master problem. Solution of the latter combines the solutions of the sub-problems in a
principled manner and ensures consistency/agreement among them. The dual decomposi-
tion approach has very strong theoretical properties, however it suffers from certain issues
in practice. When using sub-gradient optimization [7], there is no guarantee of monotonic
improvement, hence the convergence rate is very slow; when using block coordinate as-
cent instead [16, 19], convergence to the dual optimum is not guaranteed. Finally, proximal
methods that can solve the relaxed LP-problem in primal do not allow closed form updates
in general [13].

An alternative way to decompose the original problem is proposed by the Alternating
Direction Method of Multipliers (ADMM) method [3]. ADMM provides a robust convex
optimization approach with stronger and better properties than the dual decomposition ap-
proach, e.g. guarantees global convergence at O(1/ε) rate (ε is error) even when the func-
tions are non-smooth [23]. In recent years, ADMM has been successfully used to solve large
scale relaxed LP problems in a distributed fashion. Examples include AD3 [9], ADLP [11]
or Bethe-ADMM [5]. For instance, the AD3 approach is effective when it decomposes the
problem into very small size subproblems, typically involving a pair of neighboring vari-
ables only. On large scale problems, this unfortunately leads to a very large number of such
subproblems and to a rather slow convergence.

In this work, we propose a highly efficient, fully distributed algorithm for large scale
discrete inference problems, which is also based on ADMM. Normally ADMM requires de-
composition into convex functions. Instead we decompose into non-convex functions, but
which can still be solved exactly because they are submodular. The decomposition is done
into tree-based sub-problems of arbitrary sizes, each one being solved through dynamic pro-
gramming. Whilst exact solving of each sub-problem does not guarantee convergence to
the global optimum empirically good results are found. One of our key contributions is
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to demonstrate that the memory and computation complexities of the approach are only
of the order of the size of sub-problems. Our approach is easy to implement, since each
sub-problem requires one call to a dynamic programming solver, and is highly suitable for
modern GPUs with thousands of CUDA cores. Finally, we show empirically that our ap-
proach rapidly converges to a good quality estimates and is able to return a solution at any
point in practice, which is important when developing interactive systems.

We extensively evaluate the efficiency and accuracy of our distributed inference algo-
rithm on two platforms: on a CPU and on Nvidia GPU. We show convergence and speed on
different benchmark problems such as disparity estimation and image segmentation.

2 Setting the Stage
2.1 Integer Linear Program Formulation
We first define a discrete random field Y = {y1,y2, ...,yN} attached to the N nodes of a graph
G = (V,E) with vertex set V and edge set E . Each random variable takes a label from a
discrete space L of size L. We define Y = LN the set of all possible label assignments. This
random field is a pairwise Markov Random Field (MRF) if there exists an energy function
of the form

E(Y) := ∑
i∈V

θi(yi)+ ∑
(i, j)∈E

θi j(yi,y j), (1)

composed of unary and pairwise potentials. Finding the lowest cost labeling of the energy
over Y is an NP-hard combinatorial problem which can be written as the Integer Linear
Program (ILP) [22]

ILP−MRF : minimize ∑
i∈V

θθθ i · pppi + ∑
(i, j)∈E

θθθ i j ·qqqi j

with respect to (ppp,qqq) ∈Marg(G).
(2)

Here θθθ i = {θi(l)}l∈L ∈ RL represents a vector of unary potentials for i-th variable taking
a label l ∈ L and θθθ i j = {θi j(l, l′)}l,l′∈L corresponds to a vector of pairwise potentials for a
pair of variables (yi,y j) taking labels l and l′ of size L×L. We define ppp = {pppi}i∈V and qqq =
{qqqi j}(i, j)∈E as vectors of binary indicators consisting of all unary pppi = {pi(.)} and pairwise
qqqi j = {qi j(., .)} subvectors. The indicator pi(l) represents the assignment of label l to the
variable yi, i.e. pi(l) = 1 iff label l is assigned to the variable yi and zero otherwise. Similarly
qi j(l, l′) = 1 iff label l is assigned to variable yi and l′ to y j. These indicator vectors ppp
and qqq are of length P = L×N and Q = L× L× |E| respectively. Since all the possible
assignments (ppp,qqq) take only integral solutions, they are constrained to lie in the marginal
polytope Marg(G) [22] which is defined as:

Marg(G) =


ppp = {pppi}i∈V ∈ {0,1}P

qqq = {qqqi j}i j∈V ∈ {0,1}Q

∣∣∣∣∣∣∣∣
∑l∈L pi(l) = 1, ∀i ∈ V
∑l′∈L qi j(l, l′) = pi(l) ∀(i, j) ∈ E , l ∈ L
pppi ∈ {0,1}L ∀i ∈ V
qqqi j ∈ {0,1}L×L ∀(i, j) ∈ E

 .

(3)

The integral constraints pppi ∈ {0,1}L and qqqi j ∈ {0,1}L×L lead to a non-convex minimiza-
tion problem (ILP-MRF problem in Eq. 2). A pair (ppp,qqq) ∈Marg(G) satisfies the marginal
constraints as given in Eq. 3 (non-negativity, summing-up to one, and marginal consistency
between a pairwise-vector and the pixel-wise vectors on corresponding nodes).
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The ILP-MRF is in general NP-hard problem and many methods have been proposed to
solve it approximately. One such class of methods depends on solving the LP-relaxation of
the original integer problem defined in Eq. 2. More importantly our focus is on algorithms
which solve the LP-problem in distributed fashion, typically based on block coordinate de-
scent [6] or on projected sub-gradient method [7]. Block coordinate descent is usually faster
and enjoys optimality guarantees if the relaxation is tight [16], but may get stuck at sub-
optimal solutions when the objective is non-smooth. In contrast, projected sub-gradient
based method can provably solve the dual problem, however it is not a descend method (no
guarantee of monotonic improvement) requiring a sequence of diminishing step-sizes and
hence its convergence is slow [2]. In order to overcome this issue we design an ADMM-
based inference algorithm to solve the original ILP-MRF problem.

2.2 Alternating Direction Method of Multipliers
We now briefly describe general Alternating Direction Method of Multipliers (ADMM) ap-
proaches for solving optimization problems, then we describe a special case of ADMM – a
convex consensus problem and finally we discuss non-convex problems. This will form our
basis for solving the ILP-MRF problem (Eq. 2) which we outline in Sec. 3.

ADMM is a powerful optimization technique that combines the benefits of dual decom-
position and method of multipliers. The basic idea revolves around decomposing a large
(and probably difficult) problem into a set of (simpler to solve) subproblems and cleverly
combining their solutions in a principled manner to recover the solution of the original prob-
lem. Such ADMM based decomposition strategies have been recently applied to efficiently
solve MAP estimation problem [9, 10]. To describe the ADMM approach, we first consider
a general convex optimization problem

minimize f (x)+g(z)
subject to Ax+Bz = c,

(4)

where both functions f (x) and g(z) are convex, closed and proper. The objective function
is separable across variables x and z, but the problem itself is not decomposable because
of the equality constraint Ax+Bz = c. This problem can be turned into an unconstrained
minimization problem by introducing the augmented Largrangian:

Lρ(x,z,λλλ ) := f (x)+g(z)+λλλ · (Ax+Bz− c)+
ρ

2
‖Ax+Bz− c‖2

2︸ ︷︷ ︸
quadratic penalty

, (5)

where λλλ is the dual variable as in classic Lagrangian duality and ρ is a positive parameter.
While the additional penalty destroys the separability as compared to classic Lagrangian, it
helps solving dual problem efficiently. The ADMM approach conducts the joint optimization
of augmented Lagrangian by alternating the following three steps:

x(t+1) := argmin
x

[
f (x)+λλλ

(t) · (Ax)+
ρ

2
‖Ax+Bz(t)− c‖2

2

]
, (6)

z(t+1) := argmin
z

[
g(z)+λλλ

(t) · (Bz)+
ρ

2
‖Ax(t+1)+Bz− c‖2

2

]
, (7)

λλλ
(t+1) := λλλ

(t)+ρ

(
Ax(t+1)+Bz(t+1)− c

)
. (8)

First, augmented Lagrangian is minimized over x, keeping the other variables fixed (Eq.
6), and likewise over second variable z (Eq. 7). Freezing primal variables, dual variables
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λλλ s are then updated (Eq. 8) using one step of gradient ascent with step-size equal to the
augmented Lagrangian parameter ρ . Updating x and z in turn rather than jointly allows for
decomposition. It requires that these alternate updates can be computed efficiently if not in
a closed form.

The ADMM approach can be used to solve convex consensus optimization problem. For
this, consider the following optimization problem

minimize f (x) =
n

∑
i=1

fi(x), (9)

where each fi is convex, closed and proper. The problem is not separable because the variable
x is shared by all the subproblems. In order to make the problem separable, we first introduce
a set of local variables xi and a global variable z and rewrite Eq. 9 as the consensus problem:

minimize
n

∑
i=1

fi(xi)

subject to xi− z = 0, i = 1, ...,n.
(10)

Even though the objective function is separable across local variables xi, the problem is
still not decomposable because of the consensus constraints xi = z,∀i. As in the case of
general ADMM approach, we next convert this into an unconstrained maximization problem
by introducing the augmented Lagrangian:

Lρ(x1, ...,xn,z,λλλ 1, ...,λλλ n) =
n

∑
i=1

(
fi(xi)+λλλ i · (xi− z)+

ρ

2
‖xi− z‖2

2

)
. (11)

The ADMM updates for the consensus problem are:

x(t+1)
i := argmin

xi

[
fi(xi)+λλλ

(t)
i · (xi− z(t))+

ρ

2
‖xi− z(t)‖2

2

]
, (12)

z(t+1) :=
1
n

n

∑
i=1

(
x(t+1)

i +
1
ρ

λλλ
(t)
i

)
, (13)

λλλ
(t+1)
i := λλλ

(t)
i +ρ

(
x(t+1)

i − z(t+1)
)
. (14)

The first and last steps can now be carried out independently for each subproblem and the
second step exchanges messages only with the relevant subproblems, i.e. in a decentralized
manner. First, the augmented Lagrangian is minimized over each xi independently, keeping
the other variables fixed (Eq. 12), followed by the update for the global variable z (Eq. 13).
Finally each dual variable λλλ i is then updated (Eq. 14) independently using one step of
gradient ascent with step-size equal to the augmented Lagrangian parameter ρ .

Next we briefly review the application of ADMM to distributed non-convex optimization.
Let us again take our optimization problem from Eq. 9 but now consider

minimize
n

∑
i=1

fi(x)

subject to x ∈ C,
(15)

where C is a non-convex set. ADMM solving a problem with non-convex constraints modi-
fies the second step of the above problem as:

z(t+1) := PC

(
1
n

n

∑
i=1

(
x(t+1)

i +
1
ρ

λλλ
(t)
i

))
, (16)
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where PC is a projection onto a non-convex set C. The update steps for xi and λλλ i are the
same as for the consensus optimization problem described earlier. However, the z-update is
now a projection onto a non-convex set. In general, it is hard to compute but it can be carried
out easily and exactly in special cases. The most relevant case is when the elements in C are
only binary variables which is of interest to us. For example, if C = {x|xi ∈ {0,1}}, then the
projection step PC simply rounds each entry to 0 or 1, whichever is closer. More discussions
can be found in the paper of Boyd et al. [3].

3 Distributed Optimization

3.1 ADMM-based Decomposition
Following [7], we split the original graph G = (V,E) into S sub-graphs Gs = (Vs,Es), s =
1 . . .S and associate to each one auxiliary variables ppps = {ppps

i}i∈Vs and qqqs = {qqqs
i j}(i, j)∈Es , and

potential parameters {θθθ s
i , i ∈ Vs} and {θθθ s

i j, (i, j) ∈ Es}, such that:

∑
s:i∈Vs

θθθ
s
i = θθθ i, ∀i ∈ V; ∑

s:(i, j)∈Es

θθθ
s
i j = θθθ i j, ∀(i, j) ∈ E . (17)

This implies that each node and each edge of the original graph must be covered by at
least one sub-graph and that the sub-graphs can share freely nodes and edges and that the
potentials on all shared vertices or edges of the sub-graphs sum to that of the original graph.

Given sub-graphs and associated parameters, we aim to replace the difficult inference
problem (2) by a set of sub-problems that can be solved in parallel, while consistency be-
tween them is enforced in some way. Within the ADMM framework, there are several ways
to achieve this goal. We choose to rely on "master" variables ppp = {pppi}i∈V at the node level
only. Thanks to constraints (17), it is easy to see that the original ILP-MRF problem can be
written as

DIP−MRF : minimize
S

∑
s=1

(
∑

i∈Vs

θθθ
s
i · ppps

i + ∑
(i, j)∈Es

θθθ
s
i j ·qqqs

i j

)
with respect to (ppps,qqqs) ∈Marg(Gs), ∀s

pppi ∈ {0,1}L, ∀i ∈ V
subject to ppps = ppp|s, ∀s

(18)

where ppp|s = {pppi}i∈Vs denotes the sub-vector of ppp containing variables only for nodes of s−th
sub-graph.

The master node variables pppi’s do not appear in the new objective function. Consensus
between them and the node variables of all sub-graphs is enforced via equality constraints.
Note that this consensus, along with the consistency that marginal polytope enforces between
node and edge variables of each sub-graph, also ensures consensus between edge variables
across overlapping sub-graphs.

Looking at review chapter in [3] we can see that the form of Eq. 18 follows a special case
of optimization problems know as consensus for which there exists simplified forms for the
ADMM update. Following this, we first form the augmented Lagrangian of problem

Lρ({(ppps,qqqs)}, ppp,{λλλ s}) =
S

∑
s=1

(
Es(ppps,qqqs;θθθ

s)+ ∑
i∈Vs

λλλ
s
i · (ppps

i − pppi)+
ρ

2 ∑
i∈Vs

‖ppps
i − pppi‖2

2

)
(19)
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where Es(ppps,qqqs;θθθ
s) = ∑i∈Vs θθθ

s
i · ppps

i +∑(i, j)∈Es θθθ
s
i j ·qqqs

i j, ppp ∈ {0,1}P, (ppps,qqqs) ∈Marg(Gs) and
λλλ

s = {λλλ s
i}i∈Vs ∈ RL×|Vs|. This is a consensus problem in that we essentially have multiple

copies of the same variable that should take the value of the master. We can derive the
following much simplified update rules for ADMM [3].
Broadcast Involves solving one inference problem per sub-graph:

(ppps,qqqs)(t+1) := argmin
(ppps,qqqs)∈Marg(Gs)

Lρ({(ppps,qqqs)}, ppp(t),{λλλ s(t)}), ∀s. (20)

Each of these inference problems is a quadratic program (QP). Normally solving this set of
QP’s would be prohibitively expensive, in computation and memory, however one of the key
contributions of this paper is to show how we can do this efficiently in Section 3.2.
Gather In the gathering step, we need to minimize Lρ w.r.t. ppp under the constraint that the
ppp lies in the marginal polytope Marg(G) which is a non-convex problem. So we follow the
projection step described in Eq. 16 as

ppp(t+1)
i := PMarg(G)

(
1
|I(i)| ∑

s∈I(i)

(
ppps(t+1)

i +
1
ρ

λλλ
s(t)
i

))
, ∀i ∈ V, (21)

where I(i) = {s : i ∈ Vs} and PMarg(G) involves projection onto Marg(G) which simply
rounds the value to 0 or 1, whichever is closer. This step can be computed in a decen-
tralized manner – each pppi is independent and needs an access only to the corresponding
nodes (solutions) of sub-problems into which the original potential was split. This update
gets simplified if ρ is fixed through iterations and λλλ

s(t=0) = 0:

ppp(t+1)
i := PMarg(G)

(
1
|I(i)| ∑

s∈I(i)
ppps(t+1)

i

)
, ∀i ∈ V. (22)

Multiplier update The dual variable update involves only a step of dual ascent with step-
size ρ which can be made iteration dependent for improved convergence:

λλλ
s(t+1)
i := λλλ

s(t)
i +ρ

(
ppps(t+1)

i − ppp(t+1)
i

)
, ∀s, ∀i ∈ Vs. (23)

3.2 QP Sub-problems
We now describe our key contribution to solve each subproblem efficiently. Since we have
not relaxed the problem (Eq. 2), we can not use any general-purpose convex optimization
solver or custom solvers such as AD3 [10], ADLP [11]. Further these methods generally do
not scale to handle large scale random field problems consisting of millions of variables and
hundreds of classes, making them impractical for computer vision problems. To this end, we
present an alternative approach, which reduces the difficult quadratic problem (Eq. 20) to an
equivalent simpler to solve problem. But this simplification leads to an algorithm that has
similar computational and memory complexity as that of belief propagation.

In order to set up the problem, we again take the QP problem corresponding to s−th
sub-problem (Eq. 20) to be solved at iteration t:

QP− s : minimize Es(ppps,qqqs;θθθ
s)+ ∑

i∈Vs

λλλ
s(t)
i · (ppps

i − ppp(t)i )+
ρ

2 ∑
i∈Vs

‖ppps
i − ppp(t)i ‖

2
2

with respect to (ppps,qqqs) ∈Marg(Gs).

(24)
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Elementary manipulations of the objective, and removal of constant terms yields the
equivalent objective

QP− s : minimize Es(ppps,qqqs;θθθ
s +λλλ

s(t)−ρ · ppp(t)|s )+
ρ

2
‖ppps‖2

2

with respect to (ppps,qqqs) ∈Marg(Gs).
(25)

Next we describe our efficient algorithm solving the above problem.

Efficient inference For the next discussion, we constrain the sub-graphs to be trees or
chains so that we can use belief propagation (BP) to help solving associated sub-problems.

Lemma 1. Given that ppps
i ∈ Marg(Gs), the binary indicator vector ppps

i in Eq. 25 is a unit
vector with a single non-zero entry which is 1.

Lemma 2. The dot-product between two same unit vectors with a single non-zero entry is
always equal to one, i.e. ppps

i · ppps
i = 1.

Theorem 1. The QP subproblems Eq. 24, 25 reduces to a standard belief propagation with
adjusted singleton terms for tree-structured subproblems.

(ppps,qqqs)(t+1) := arg min
(ppps,qqqs)

Es(θθθ
s +λλλ

s(t)−ρ · ppp(t)|s ; ppps,qqqs)+ const.

s.t. (ppps,qqqs) ∈Marg(Gs).
(26)

Proof. Under assumptions Lemma 1 and Lemma 2, we observe that the quadratic term in
Eq. 25 is always constant as it is a dot product of two same unit vector with a single non-zero
entry.

(ppps,qqqs)(t+1) := argmin
(ppps,qqqs)∈Marg(Gs)

Es(θθθ
s +λλλ

s(t)−ρ · ppp(t)|s ; ppps,qqqs)+
ρ

2 ∑
i∈Vs

ppps
i · ppps

i︸ ︷︷ ︸
=1

 . (27)

A term with a constant value for any possible label assignment does not effect the energy
minimization. Each subproblem minimizes the following energy function

(ppps,qqqs)(t+1) := arg min
(ppps,qqqs)

Es(θθθ
s +λλλ

s(t)−ρ · ppp(t)|s ; ppps,qqqs)+ const.

s.t. (ppps,qqqs) ∈Marg(Gs).
(28)

We replaced the quadratic term by adjusted unary potentials. Since we do not need to intro-
duce any loops the QP subproblem reduces to a standard belief propagation with adjusted
singleton terms. �

4 Experimental Results
We demonstrate the performance of our algorithm on several low-level benchmark labelling
problems including stereo correspondence, image segmentation and denoising. In all ex-
periments, timings are based on a single Nvidia GTX Titan Black graphics card with 6144
MB memory on board featuring 15 multiprocessors and 2880 stream processors. Our CPU
timings are based on code run on an Intel Xeon 3.33 GHz CPU with 24 GB of RAM.
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These low-level problems highlights different properties of our algorithm. The review
paper of Szeliski et al. [18] provides many benchmark images corresponding to these prob-
lems. Further, they provided the unary and pairwise energy terms as part of their dataset for
different benchmark problems which we use in all our experiments. Our main comparison on
GPU is with the dual-decomposition (DD) based approach of Komodakis et al. [7]. To high-
light the efficiency and accuracy achieved by our algorithm against other existing distributed
algorithms such as the DD approach and ADMM based AD3 approach, we extensively eval-
uate different properties on a single core CPU machine. Finally we also compare against tree
re-weighted message passing (TRWS) algorithm. We use the codes in the software library
OpenGM for the DD and an implementation provided by authors of AD3.

In Fig. 1 we show the energy values and lower bounds (dual function) across differ-
ent iterations of our algorithm on three benchmark images: Flower (image segmentation),
Tsukuba (stereo correspondence) and Penguin (image denoising). We compare the ener-
gies and lower bounds achieved across different iterations of our algorithm against the other
distributed algorithms and the TRW-S approach. It can seen that our algorithm achieves a
solution very close to the optimum in a few iterations (generally 20 iterations), while the dual
decomposition based method takes 3−5× more iterations to converge to the same solution.
Additionally our algorithm achieves global optimum for binary submodular problem as in
binary image segmentation problem following weak tree agreement [7]. In general on all
these benchmark images, our algorithm achieves better energies than the TRW-S approach
except on image denoising problem where TRW-S performs better than us.

We also extensively compare the speed-up offered by our approach on GPU and multi-
core CPUs. In Tab. 1 we compare the time taken by our algorithm against the other ap-
proaches to reach to the same level of accuracy on binary image segmentation problem
(Flower). As can be seen, our algorithm takes almost 5.2× less time than the approach
of the dual decomposition method to reach to an error rate of 0.001% on Nvidia GPU. The
CPU version is approximately 2× faster than the AD3. The dual decomposition uses projec-
tive adaptive stepsize. For AD3, we used adaptive stepsize and caching. For both methods
(DD and AD3), we run the algorithms for various initial step-sizes from range < 0.01,100 >
and report the best results. Our method uses adaptive stepsize rule based on residuals, lazy
evaluation (caching) and a medium-size subproblems. Next we provide details on the sizes
of subproblems, and the idea of caching on image segmentation problem.
Subproblem size Even though in theory all the tree-structured subproblems are equally
powerful, in practice, we observe that different sizes of tree-structured subproblems effect
runtime differently. Figure 1 (right) demonstrates this behaviour – while the larger sub-
problems require less iterations to converge, the smaller subproblems converge in a shorter
runtime up to some subproblem-size as they allow to cache larger part of the problem. As
shown in Fig. 1 the number of iterations taken by sub-problems of sizes 2 is generally very
large (around 1600) iterations compared to when we have each subproblem of size 200 which
takes around 300 iterations to converge. Empirically we found that the tree of size 20 worked
best for us by converging to the optimum solution fastest.

Caching/Lazy-evaluation After a few iterations, solutions ppps
i of many subproblems achieve

a consensus, i.e. ppps(t)
i = ppp(t)|s,i,∀s ∈ S and do not change over iterations ppps(t)

i = ppps(t+1)
i . This

means, that also the global variables ppp(t)i are the same and the dual variables λλλ
s
i are not chang-

ing any more. If all variables ppps
i of a subproblem s achieve a consensus, the subproblem s

enters the idle state and does not need to be re-computed in the next iteration. Therefore our
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Figure 1: The energy values and lower bounds (dual function) across different iterations of
our algorithm. A and B: Comparison against dual decomposition (DD) on the GPU for im-
age segmentation (“Flower”) and disparity estimation (“Tsukuba”) problems. Our approach
requires less iterations to reach to the same accuracy than both, DD and AD3. C: compari-
son of fixed-ρ ADMM and DD with square summable but not summable stepsize for image
denoising (“Penguin”). D: We show how different sizes of chains effect the convergence.

Algorithm / ε 10−1 10−2 10−3 10−4 10−5 10−6 10−7

C-AD3 (CPU) 0.0400 30.0000 89.0000 189.8400 264.2000 288.2800 293.1000
TRWS (CPU) 0.1000 0.1100 0.4092 0.9736 2.3482 4.1452 5.7330

DD (CPU) 0.6500 1.0000 6.5000 24.8900 90.0800 322.6500 438.2500
DD (GPU) 0.0094 0.0185 0.0940 0.0357 1.416 4.7000 6.3450

ADMM (CPU) 0.7046 5.9971 23.1602 78.1000 97.8220 109.5700 134.8900
ADMM (GPU) 0.0688 0.0601 0.2316 0.7263 0.9202 1.0064 1.2661

C-ADMM (GPU) 0.0688 0.0315 0.0568 0.1520 0.1952 0.2267 0.2854

Table 1: Time taken (in seconds) by different algorithms on binary segmentation (“Flower”)
for both, CPU and GPU implementations. The timings are reported w.r.t. error ε from the
bound, i.e. ε = 10−1 is worse than ε = 10−7. CPU implementations do not favour parallelism
(evaluated on a single core). A GPU implementation with caching of the proposed method
(C-ADMM) is: a) 480 × faster than the CPU version (without caching); b) 5.5× faster than
the gpu implementation of the DD (both without caching); c) our gpu implementation is
1027× faster than the cpu version of AD3 (both with caching) and 20× faster than TRWS.

inference approach only put computation efforts where they are required. In Tab. 1 we show
how GPU timings changes by a factor of 10× after adding caching into the computation.

We observe that algorithms with lazy evaluation are in particular useful when we have
to do with a very large number of labels. Finally it should be noted that our focus was
on speed (implementation). We believe with the advancement in the GPU and multi-core
architectures, we will be able to perform experiments on even larger random fields with
billions of variables.

5 Conclusion
In this work, we have proposed an efficient distributed inference algorithm for MAP esti-
mation in random field models. It enjoys the same decompositional properties as the dual
decomposition approach but in practice gives better performance. The proposed algorithm
converges more quickly than its competitors and is suitable for a GPU implementation. We
observe a significant improvement in speed compared to various state-of-the-art methods.

Our approach fits well with the recent interests in developing efficient distributed algo-
rithms dealing with the large-scale problems. We believe there might be several future works
spawning from our algorithm, e.g. distributed learning of large-scale random fields.
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