
Efficient Temporal Consistency for Streaming Video Scene Analysis

Ondrej Miksik Daniel Munoz J. Andrew Bagnell Martial Hebert

Abstract— We address the problem of image-based scene
analysis from streaming video, as would be seen from a
moving platform, in order to efficiently generate spatially and
temporally consistent predictions of semantic categories over
time. In contrast to previous techniques which typically address
this problem in batch and/or through graphical models, we
demonstrate that by learning visual similarities between pixels
across frames, a simple filtering algorithm is able to achieve
high performance predictions in an efficient and online/causal
manner. Our technique is a meta-algorithm that can be ef-
ficiently wrapped around any scene analysis technique that
produces a per-pixel semantic category distribution. We validate
our approach over three different scene analysis techniques on
three different datasets that contain different semantic object
categories. Our experiments demonstrate that our approach
is very efficient in practice and substantially improves the
consistency of the predictions over time.

I. INTRODUCTION

A semantic understanding of the environment from im-
ages, as illustrated in Fig. 1, plays an important role for
a variety of robotic tasks, such as autonomous navigation.
This problem has been investigated extensively in prior work
using different techniques such as graphical models [1], [2],
deep learning [3], [4], exemplar-based [5], [6], and iterative
decoding techniques [7], [8]. Typically, these techniques
address the problem of scene analysis from a single im-
age, and extending them to handle temporal sequences of
images, as would be seen from a mobile platform, is very
challenging. Simply applying the scene analysis algorithm to
each image independently is not sufficient because it does not
properly enforce consistent predictions over time. In practice,
the temporally inconsistent predictions result in “flickering”
classifications. This effect is not solely due to the motion
of the camera through the 3D scene: we often observe this
behavior even on a sequence of images from a static scene
due to subtle illumination changes. These inconsistencies
in predictions can have a major impact on robotic tasks
in practice, e.g., predicted obstacles may suddenly appear
in front of the robot in one frame and then vanish in the
next. The situation is further complicated by the need for
online/causal algorithms in robotics applications, in which
the system does not have access to future frames, unlike

O. M. is with the Center for Machine Perception, Czech Technical
University in Prague. ondra.miksik@gmail.com

D. M., J. A. B. and M. H. are with The Robotics Institute, Carnegie
Mellon University. {dmunoz, dbagnell, hebert}@ri.cmu.edu

This work was conducted through collaborative participation in the
Robotics Consortium sponsored by the U.S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
W911NF-10-2-0016 and by the Czech Science Foundation grant GACR
P103/12/G084.

road

sidewalk

tree
car

building

tree

tree

sky

building

sidewalk
pedestrian

Fig. 1: Predicted semantic categories from our approach.

video interpretation systems which can proceed in batch
mode by using all the available frames [9], [10].

Inspired by early work in robotics using linear filters
[11], we consider a simple, causal filtering technique for
maintaining temporally consistent predictions. Our approach
is a meta-algorithm in the sense that it is agnostic to the
specific way in which predictions are generated, so that it
can be used with any per-frame scene analysis technique.
Our only requirement is that the per-frame scene analysis
technique predicts a per-pixel probability distribution over
semantic labels, instead of a single label.

Our algorithm is illustrated in Fig. 2. At the current frame
I(t), each pixel i is associated with a label probability
distribution y

(t)
i , which is produced by a scene analysis

algorithm. Our goal is to ensure that the final label dis-
tribution that we return for pixel i is consistent with the
temporal prediction ŷ

(t−1)
j from its corresponding pixel j in

the previous frame I(t−1), which we do not know. Hence, we
use optical flow [12] to estimate a neighborhood of candidate
correspondences in the previous frame. Giving all neighbors
equal weight and defining the smoothed prediction based
on the average of the neighborhood’s predictions is unwise
because the neighborhood could include pixels of completely
different objects. Therefore, between pixels i ∈ I(t) and j ∈
I(t−1), we propose to learn a data-driven, visual similarity
function to assign a high weight wij between pixels that are
likely to correspond to each other (and low weight for those
that are not) in order to select correct correspondences and
accurately propagate predictions over time.

Before discussing how predictions are combined between

i

j
wij

(a) (b) (c) (d) (e)

Fig. 2: Overview of our approach. (a) Frame I(t−1). (b) Frame I(t). The distribution of labels at a pixel in frame I(t) is
combined with a weighted average of the distributions of labels in a neighborhood of pixels (the 3× 3 orange grid) in the
previous frame I(t−1). This neighborhood is initialized using optical flow techniques (c). We propagate predictions across
time by learning a similarity function between pixels i ∈ I(t) (e) and j ∈ I(t−1) (d). This similarity assigns high values wij
between visually similar pixels (green cells) and low values over visually different pixels (red cells).

two frames, in Sec. III, we first demonstrate the impor-
tance of using a data-driven function for measuring visual
similarity between candidate pixels and present an efficient
algorithm to learn this similarity function. In Sec. IV, we
discuss how candidate pixels between frames are generated
and how to combine the previous frame’s predictions using
the learned similarity function. In Sec. V, we validate our
proposed method over three distinct semantic labeling algo-
rithms on three different datasets. Our experiments confirm
that this natural approach yields substantial improvements
in the consistency of the predictions over time, with the
additional important benefits of being very efficient and
simple to implement.

II. RELATED WORK

One popular way to incorporate temporal information is to
compute Structure from Motion (SfM) between consecutive
frames in order to compute geometric/motion-based features
[13]–[15]. One drawback of this approach is that accurate
SfM computation may be slow or may require a large buffer
of previous frames to process. Alternatively, or in addition, a
large graphical model can be defined among multiple frames,
where edges between frames propagate predictions over time
[16]–[21]. Performing bounded, approximate inference over
such large models remains a challenging problem. Further-
more, in order to efficiently compute approximate solutions,
only an estimate of the MAP distribution is returned, i.e.,
there is no uncertainty in the labeling or marginal distribu-
tions. To further improve efficiency in practice, techniques
make further approximations at the cost of loss of guarantees
on the solution quality. By returning label probabilities,
our approach may be more useful as input for subsequent
robotic algorithms, such as reasoning about multiple in-
terpretation hypotheses. Another technique for maintaining
temporal consistency, which is similar to defining a spatio-
temporal graphical model, is to analyze volumes from a
spatio-temporal segmentation [9]. This batch approach is
omniscient in the sense that it requires processing the entire
video sequence, which is typically not suitable for most
robotic applications.

III. LEARNING SIMILARITY

A. Metric Learning

In order to selectively propagate predictions from the
previous frame, we assign high weight between pixels that
are visually similar. One standard way to measure similarity
wij between two pixels is through a radial basis kernel

wij = exp

(
−d(fi, fj)

σ2

)
, (1)

where fi ∈ Rd is the vector of visual features of pixel
i, σ = 0.4 controls the bandwidth of the kernel, and
d : Rd × Rd → R+ is a distance function. Only using
the pixels’ RGB values for the feature representation is not
discriminative enough to correctly match correspondences.
We instead augment RGB values with the responses from 17
gradient filters and a 11 × 11 local binary pattern window,
resulting in a feature descriptor fi ∈ R140. Because of the
increase in dimensionality, the standard squared Euclidean
distance

d(fi, fj) = (fi − fj)
T (fi − fj) = Tr(∆ij), (2)

where ∆ij = (fi − fj)(fi − fj)
T , is typically large between

most feature vectors, as illustrated in Fig. 3-a,b. Alternatively,
we can learn a distance that has the desirable properties for
our application. That is, for a pair of pixels (i, j) from the set
of pairs of pixels that truly correspond to each other, Ep, we
want d(fi, fj) to be small, and for a pair of pixels (i, k) from
the set that do not correspond, En, we want d(fi, fk) to be
large. Learning a distance, or metric, also remains an active
area of research [22]–[27], and a variety of techniques could
be used to learn d. As we are concerned with efficiency in
the predictions, we use a simple Mahalanobis distance

dM(fi, fj) = (fi − fj)
TM(fi − fj) = Tr(MT∆ij), (3)

and propose an efficient method to learn the parameters M
offline from training data.

We follow the max-margin learning strategy and learn a
metric such that the distances between pixels that do not
correspond (i, k) ∈ En are larger by a margin than the

distances between pixels that do correspond (i, j) ∈ Ep. This
can be formulated as the convex, semidefinite program

min
M,ξ,ζ

‖M‖2F + α
∑

(i,j)∈Ep

ξij + β
∑

(i,k)∈En

ζik

s.t. dM(fi, fj) ≤ 1 + ξij , ∀(i, j) ∈ Ep
dM(fi, fk) ≥ 2 + ζik, ∀(i, k) ∈ En
M ∈M, (4)

where M = {M|M � 0,M = MT } is the convex cone of
symmetric positive-semidefinite matrices, and α and β penal-
ize violating the margins. This program can be equivalently
rewritten as the unconstrained, convex minimization

min
M∈M

Tr(MTM) + α
∑

(i,j)∈Ep

max(0,Tr(MT∆ij)− 1)

+ β
∑

(i,k)∈En

max(0, 2− Tr(MT∆ik)),

(5)

and can be efficiently optimized using the projected subgra-
dient method [28]. We define Υij and Ψik to be subgradients
of the respective summands:

Υij =

{
∆ij , Tr(MT∆ij)− 1 > 0
0, otherwise

,

Ψik =

{
−∆ik, 2− Tr(MT∆ik) > 0
0, otherwise.

(6)

The subgradient update, with small step-size ηt, is then

Mt+1 ← PM(Mt−ηt(Mt+α
∑

(i,j)∈Ep

Υij+β
∑

(i,k)∈En

Ψik)),

(7)
where PM projects to the closest matrix on the convex
coneM. Since Υij and Ψik are symmetric by construction,
the closest projection, with respect to the Frobenius norm,
is computed by reconstructing the matrix with its negative
eigenvalues set to zero [29]. To further improve run-time
efficiency, we also constrain M to be a diagonal matrix.

As illustrated in Fig. 3-c, our learned metric measures
visual similarity much better than Euclidean distance. Al-
though the computed distances may not be optimal across
the entire image, we observe correct behavior over a local
area. Thus, we use optical flow to initialize the area in which
to compute distances over.

B. Obtaining Training Data

Learning the metric requires annotated examples of pairs
of pixels that do and do not correspond. One way to generate
these examples is to use the annotated images and sample
pairs of pixels that belong to the same semantic category
to create Ep and use pairs between the different categories
to create En. The result will be a general metric between
categories rather than correspondences between pixels and is
a much harder problem. Furthermore, our similarity metric
should work well between correspondences under different
viewpoints, as this is the mode of operation while the robot
is moving.

+
+

(a)

(b)

(c)

Fig. 3: Comparing similarity metrics. (a) A scene with two
pixels of interest selected. (b) The inverted heatmaps of
Euclidean distances of the respective pixel of interest to every
other pixel in the image (bright means small distance). (c)
The inverted heatmaps from our learned Mahalanobis metric.

We instead generate our pairs of training data using pixel
correspondences across multiple frames and viewpoints.
These correspondences can be easily obtained through a
variety of different keypoint-based algorithms. Specifically,
we use the publicly available SfM package, Bundler [30].
Given a collection of images, Bundler produces a 3-D
reconstruction of the scene (which we ignore) as well as the
corresponding pixels across multiple frames. As illustrated in
Fig. 4, we use pairs of pixels from the same correspondence
to construct Ep and use pairs that do not correspond to
construct En when learning the metric offline. In addition
to hard margin constraints, it may be beneficial to also
incorporate (convex) relative margin constraints over triplets
of pixels i, j, k

dM(fi, fj) ≤ dM (fi, fk) + δijk, (8)

where δijk ∈ R+ encodes the relative benefit (e.g., distance)
of true correspondences (i, j) over incorrect correspondences
(i, k); we leave this for future work. Now that we can
accurately measure visual similarity, in the following section
we describe how to combine predictions over time.

+ +

++
+

+ +

++

+ +

++
+

+ +
++ +

+ +
++

+ +
+++

Fig. 4: Generating pairs of training data. Pairs of pixels of
true correspondences (along the same colored line) form Ep
and pairs of pixels that do not correspond (between different
colors lines) form En.

IV. TEMPORAL CONSISTENCY

A. Optical Flow for Data Propagation

We are interested in general scene analysis without mak-
ing strong assumptions on the movement/frame-rate of the
camera and/or the type of object motions in the scene.
Furthermore, we require the procedure to be as efficient as
possible so it can potentially be used onboard a mobile robot.
To generate initial hypothesis between frames, we use the
efficient Anisotropic Huber-L1 dense optical flow algorithm
from Werlberger et al. [12] to obtain flow fields1 ←−Vx,

←−
Vy

that project pixel coordinates from (u(t), v(t)) ∈ I(t) to
(u(t−1), v(t−1)) ∈ I(t−1) via[

u(t−1)

v(t−1)

]
=

[
u(t)

v(t)

]
+

[←−
Vx(u(t), v(t))
←−
Vy(u(t), v(t))

]
. (9)

Although we use a state-of-the-art optical flow algorithm,
it is not perfect and some velocity vectors may not match ex-
actly and/or some correspondences between frames might be
missing. To help recover from missing flow information, we
warp/transfer small patches of data at a time, instead of a sin-
gle pixel. That is, for each pixel (u(t), v(t)) ∈ I(t) and its cor-
respondence (u(t−1), v(t−1)) ∈ I(t−1), we use the forward-
in-time flow vector [−

←−
Vx(u(t), v(t)),−

←−
Vy(u(t), v(t))]T to

transfer both the RGB values and temporally smoothed
predictions, ŷ(t−1), of each pixel in a 5 × 5 patch centered
at (u(t−1), v(t−1)). For each warped pixel, we accumulate
RGB values and previous temporal predictions into the
respective coordinates. After all pixels from the previous
frame have been warped, the RGB values and predictions
are appropriately averaged by the number of projections that
fell into each coordinate, resulting in a warped RGB image
Ĩ(t) and warped predictions ỹ(t) into the current time t.

Estimated optical flows are imperfect, and in these scenar-
ios we do not want to propagate label predictions over time.
A standard method to detect optical flow failures is to ensure
that the flows forward and backward in time are consistent.
We consider the flow at pixel (u(t), v(t)) to be invalid if∥∥∥∥∥
[−→

Vx(u(t−1), v(t−1))
−→
Vy(u(t−1), v(t−1))

]
+

[←−
Vx(u(t), v(t))
←−
Vy(u(t), v(t))

]∥∥∥∥∥
2

≥ κ,

(10)

1Here, the subscripts x, y are overloaded to indicate direction and are not
related to features nor labels.

Algorithm 1 Causal Temporal Smoothing

1: Inputs: Metric M, previous frame I(t−1) with its tem-
porally smoothed predictions ŷ(t−1), and current frame
I(t) with its independent predictions y(t).

2: Compute
−→
V and

←−
V between I(t−1) and I(t) using [12]

3: Use
←−
V to warp I(t−1) → Ĩ(t) and ŷ(t−1) → ỹ(t), except

for invalid locations as defined by Eq. 10
4: Compute per-pixel features for Ĩ(t) and I(t)

5: for i ∈ I(t) do
6: Define ŷ

(t)
i using Eqs. 11, 1, 3

7: end for
8: return Temporally smoothed predictions ŷ(t)

where
−→
V is the flow from I(t−1) to I(t) and κ = 13 is a small

threshold which is related to the size of the neighborhood
used in the update described in the following subsection.

B. Causal Temporal Smoothing

Now we have all the necessary components for recursive
temporal smoothing: a metric for measuring visual similarity
between two pixels, wij , and a method to warp pixels
between frames. At the recursive step of our procedure, we
have the warped RGB image, Ĩ(t), its warped temporally
smoothed predictions, ỹ(t), and the predicted per-pixel prob-
abilities from the scene analysis algorithm ŷ(t) for current
frame I(t). For each pixel i ∈ I(t) and j ∈ Ĩ(t), we
compute the pixel features (RGB, texture gradients, local
binary pattern) fi, fj that were used to learn our metric. Using
an exponential smoothing update, we define a pixel’s new
temporally smoothed predictions using the update rule

ŷ
(t)
i =

1

Zi

 ∑
j∈N(t)

i

wijỹ
(t)
j + cy

(t)
i

 , (11)

where N (t)
i is a 5× 5 spatial neighborhood in I(t) centered

at pixel i, c = 0.25 is our prior belief on the independent
prediction from the scene analysis algorithm, and Zi =∑
j∈N(t)

i
wij+c ensures that ŷ

(t)
i sums to one. The procedure

then repeats to smooth predictions y(t+1) using ŷ(t). The
entire procedure is summarized in Algorithm 1.

V. EXPERIMENTAL ANALYSIS

We evaluate our approach over three sophisticated scene
analysis algorithms over three different datasets. All results
were obtained using the same smoothing parameters across
the different algorithms/datasets.

A. Algorithms and Datasets

1) CamVid: This dataset [13] consists of over 10 minutes
of 30 Hz video captured in an urban environment during
daylight and dusk containing 11 semantic categories. The
sequences are sparsely annotated in time at 1 Hz. For this
dataset, we use the hierarchical inference machine algorithm
from [8]. Without using any temporal information, we obtain
state-of-the-art overall pixel and average per-class accuracies

TABLE I: Average timings between two frames

Computation Time (s)
Optical flows (GPU) 0.02

Smoothing (CPU) 0.75
Total 0.77

of 84.2% and 59.5%, respectively, and is comparable [14] or
exceeds [13] other techniques which use temporal features.
For evaluating temporal consistency, we trained two separate
models. The first is trained on the standard training fold from
[13], and evaluated the test sequence 05VD. The second
model is evaluated on the 16E5 sequence and trained on
the remaining images not from this sequence.

2) NYUScenes: This dataset consists of 74 annotated
frames and is captured by a person walking in an urban street
with a hand-held camera. In addition to the moving objects,
the video has a lot of camera motion due to the motion of the
person. For this dataset, we used the outputs from the deep
learning architecture [4], provided by the authors. This model
was trained on the SIFTFlow dataset [6], which contains
33 semantic categories.

3) MPI-VehicleScenes: This dataset2 [31] consists
of 156 annotated frames captured from a dashboard-mounted
camera while driving in a city and consists of only 5 semantic
classes. For this dataset, we used the outputs from the per-
pixel, boosted classifier [16], provided by the authors, which
is based on the JointBoost algorithm [32].

B. Efficiency

There are two main components of our approach: 1) for-
ward and backward, dense optical flow computation and 2)
temporal smoothing (which includes warping, pixel features,
and the weighted averaging). The average computation times
between two frames are shown in Table I. The experiments
were performed using a GeForce GTX 590 GPU and an Intel
X5670 CPU. We observe that dense optical flow computation
time can be brought down from the order of seconds with
using a CPU to 10s of milliseconds with using a GPU. As
our approach relies on many, simple numeric computations,
we would expect a similar efficiency improvement with a
GPU implementation.

In practice, the computational bottleneck is often from
the scene analysis algorithm, depending on how expressive
the features and/or model are. For example, both of the
structured prediction algorithms [4], [8] we use take between
1 and 2 seconds to process a frame, which also includes
feature computation. However, we demonstrate with the third
experiment on MPI-VehicleScenes that our approach
can yield spatially and temporally consistent classifications
with a simple per-pixel classifier.

C. Analysis

Videos comparing per-frame and the temporally smoothed
classifications for the sequences are available in the supple-
mentary multimedia attachment; qualitative examples from

2We use video sequence Continuous 2008.07.30 at 13.10.53

TABLE II: Per-class F1 scores and accuracy on CamVid

05VD 16E5
Class Per-frame Temporal Per-frame Temporal
sky .303 .682 .237 .639
tree .352 .563 .336 .518
road .197 .546 .150 .529
sidewalk .277 .512 .188 .357
building .165 .232 .275 .395
car .127 .456 .304 .597
pole .201 .386 .252 .285
person .138 .218 .324 .193
bicycle .323 .165 .348 .043
fence .325 .712 .335 .668
sign .367 .029 .378 .039
Accuracy .261 .591 .286 .530

TABLE III: Per-class F1 scores and accuracy on NYU

Class Per-frame Temporal
building .231 .547
car .207 .630
door .046 .000
person .094 .080
pole .169 .139
road .152 .575
sidewalk .373 .274
sign .127 .000
sky .002 .019
tree .353 .630
window .102 .101
Accuracy .209 .500

TABLE IV: Per-class F1 scores and accuracy on MPI

Class Per-frame Temporal
background .420 .730
road .503 .321
lane-marking .779 .319
vehicle .075 .276
sky .206 .571
Accuracy .407 .533

each sequence are shown in Figs. 5, 6, and 7. The videos
demonstrate the substantial benefit of using temporal smooth-
ing, especially on the CamVid sequences which are captured
at a much higher frame rate.

It is important to remember that our approach relies on
the output of the inner scene analysis algorithm and cannot
fix misclassifications due to the biases of the base algorithm.
Hence, for quantitative evaluation we first only consider pix-
els from which the prediction obtained by the scene analysis
algorithm differs with our temporal smoothing. We compute
a confusion matrix over these differing pixels and report the
per-class F1 scores in Tables II, III, IV, as well as the per-
pixel accuracy on the differing pixels; improvements greater
than 0.03 are bolded. This evaluation measures whether we
are worse or better off with using temporal smoothing.

The behavior across datasets is consistent: categories
which occupy large areas of the image (e.g., sky, trees, cars,
buildings) are significantly improved upon and predictions
on some of the smaller objects (e.g., signs, people, lane-
markings) are sometimes oversmoothed. There are various
reasons as to why performance may decrease. 1) Optical flow
estimation on small objects may fail due to large displace-

TABLE V: Overall pixel accuracies (%)

Dataset Independent Smoothed
CamVid-05VD 84.60 86.85
CamVid-16E5 87.37 88.84
NYUScenes 71.11 75.31

MPI-VehicleScenes 93.10 93.55

ments and/or excessive blurring, resulting in neighborhoods
that are not adequately initialized. 2) As these objects occupy
a small number of pixels, over-smoothing from spatially
adjacent objects will cause a large drop in performance.
Similarly, it is challenging to accurately annotated these
intricate objects, and imperfections in the ground truth can
further skew evaluation. 3) These small object categories
are typically challenging to classify. When the predicted
label distributions from the scene analysis algorithm are less
confident, i.e., have high entropy, the resulting weighted
combination may be incorrect. Nonetheless, the overall
improvement in accuracy shows a clear benefit of using
temporal smoothing rather than per-frame classification.

The comparisons of overall per-pixel accuracy for each
sequence are shown in Table V. Due to the sparseness of the
CamVid annotations, the quantitative improvements are not
as drastic as we would expect, however, there is a noticeable
gain. We also observe a large quantitative improvement in the
NYUScenes sequence, even in the presence of large camera
motion. The improvement in the MPI-VehicleScenes
dataset is modest, however, this can be attributed to a small
label set of 5 categories (vs. 11 and 33 from the other two)
which often have little confusion. Furthermore, we note the
predictions are qualitatively much smoother in appearance,
even from using a per-pixel classifier.

VI. CONCLUSION

We propose an efficient meta-algorithm for the problem of
spatio-temporal consistent 2-D scene analysis from streaming
video. Our approach is based on recursive weighted filtering
in a small neighborhood, where large displacements are cap-
tured by dense optical flow, and we propose an efficient algo-
rithm to learn image-based similarities between pixels. As we
do not require information about future frames, our causal
algorithm can handle streaming images in a very efficient
manner. Furthermore, we demonstrate that our approach can
be wrapped around various structured prediction algorithms
to improve predictions without a difficult redefinition of an
inference process.

ACKNOWLEDGMENTS

We thank A. Wendel for helping with the optical flow
computation, C. Fabaret for providing the NYUScenes
dataset and his classifications, C. Wojek for providing his
classifications on the MPI-VechicleScenes dataset, and
J. Tighe for discussions about the CamVid dataset.

REFERENCES

[1] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr,
“What, where & how many? combining object detectors and crfs,” in
ECCV, 2010.

[2] D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert, “Contextual
classification with functional max-margin markov networks,” in CVPR,
2009.

[3] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural
scenes and natural language with recursive neural networks,” in ICML,
2011.

[4] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Scene parsing
with multiscale feature learning, purity trees and optimal covers,” in
ICML, 2012.

[5] J. Tighe and S. Lazebnik, “Superparsing: Scalable nonparametric
image parsing with superpixels,” in ECCV, 2010.

[6] C. Liu, J. Yuen, and A. Torralba, “SIFT flow: Nonparametric scene
parsing via label transfer,” IEEE T-PAMI, vol. 33, no. 12, 2011.

[7] Z. Tu and X. Bai, “Auto-context and its application to high-level vision
tasks and 3d brain image segmentation,” IEEE T-PAMI, vol. 32, no. 10,
2010.

[8] D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked hierarchical
labeling,” in ECCV, 2010.

[9] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Efficient hierarchical
graph-based video segmentation,” in CVPR, 2010.

[10] W. Brendel and S. Todorovic, “Learning spatiotemporal graphs of
human activities,” in ICCV, 2011.

[11] A. Giachetti, M. Campani, and V. Torre, “The use of optical flow for
road navigation,” in ICRA, 1998.

[12] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and
H. Bischof, “Anisotropic huber-L1 optical flow,” in BMVC, 2009.

[13] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” in ECCV,
2008.

[14] P. Sturgess, K. Alahari, L. Ladicky, and P. H. S. Torr, “Combining
appearance and structure from motion features for road scene under-
standing,” in BMVC, 2009.

[15] B. Micusik, J. Kosecka, and G. Singh, “Semantic parsing of street
scenes from video,” IJRR, vol. 31, no. 4, 2012.

[16] C. Wojek and B. Schiele, “A dynamic conditional random field model
for joint labeling of object and scene classes,” in ECCV, 2008.

[17] A. Ess, T. Müller, H. Grabner, and L. Van Gool, “Segmentation-based
urban traffic scene understanding,” in BMVC, 2009.

[18] J. Xiao and L. Quan, “Multiple view semantic segmentation for street
view images,” in ICCV, 2009.

[19] R. de Nijs, J. S. Ramos, G. Roig, X. Boix, L. V. Gool, and
K. Kühnlenz., “On-line semantic perception using uncertainty,” in
IROS, 2012.

[20] V. Badrinarayanan, F. Galasso, and R. Cipolla, “Label propagation in
video sequences,” in CVPR, 2010.

[21] A. Y. C. Chen and J. J. Corso, “Temporally consistent multi-class
video-object segmentation with the video graph-shifts algorithm,” in
WACV, 2011.

[22] E. Xing, A. Y. Ng, M. Jordan, and S. Russell, “Distance metric
learning, with application to clustering with side-information,” in
NIPS, 2003.

[23] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, “Information-theoretic
metric learning,” in ICML, 2007.

[24] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neigh-
bourhood components analysis,” in NIPS, 2004.

[25] R. Hadsell, S. Chopra, and Y. Lecun, “Dimensionality reduction by
learning an invariant mapping,” in CVPR, 2006.

[26] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” JMLR, vol. 10, 2009.

[27] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” JMLR, vol. 11, 2010.

[28] N. Ratliff, J. Bagnell, and M. Zinkevich, “Online subgradient methods
for structured prediction,” in AISTATS, 2007.

[29] G. Golub and C. F. Van Loan, Matrix Computations. John Hopkins
University Press, 1996.

[30] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring
photo collections in 3d,” ACM SIGGRAPH, 2006.

[31] C. Wojek, S. Roth, K. Schindler, and B. Schiele, “Monocular 3d scene
modeling and inference: Understanding multi-object traffic scenes,” in
ECCV, 2010.

[32] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features
for multiclass and multiview object detection,” IEEE T-PAMI, vol. 29,
no. 5, 2007.

(a) frame 00055 (b) frame 00056 (c) frame 00057 (d) frame 00058 (e) frame 00059

— sky — tree — road — sidewalk — building — car — column pole — pedestrian — bicycle — fence — sign symbol

Fig. 5: CamVid classifications. Top: per-frame. Bottom: temporally smoothed. Inconsistent predictions are highlighted.

(a) frame 00055 (b) frame 00056 (c) frame 00057 (d) frame 00058 (e) frame 00059
— unknown — awning — balcony — building — car — door — person — road — sidewalk — sign
— sky — streetlight — sun — tree — window

Fig. 6: NYUScenes classifications. Top: per-frame. Bottom: temporally smoothed. Inconsistent predictions are highlighted.

(a) frame 00265 (b) frame 00266 (c) frame 00267 (d) frame 00268 (e) frame 00269

— void — road — lane-marking — vehicle — sky

Fig. 7: MPI-VehicleScenes classifications. Top: per-frame. Bottom: temporally smoothed.

