Evaluation of Local Detectors and Descriptors for Fast Feature Matching

Ondrej Miksik
CMP, Czech Republic
ondra.miksik@gmail.com

Abstract

Local feature detectors and descriptors are widely
used in many computer vision applications and various
methods have been proposed during the past decade.
There have been a number of evaluations focused on
various aspects of local features, matching accuracy
in particular, however there has been no comparisons
considering the accuracy and speed trade-offs of re-
cent extractors such as BRIEF, BRISK, ORB, MRRID,
MROGH and LIOP. This paper provides a performance
evaluation of recent feature detectors and compares
their matching precision and speed in randomized kd-
trees setup as well as an evaluation of binary descrip-
tors with efficient computation of Hamming distance.

1 Introduction

One of the most influencing papers in computer vi-
sion is the seminal work on SIFT [8]. Although the
SIFT keypoint detector and descriptor have stood the
test of time and have been widely used in various ap-
plications including panorama stitching, object recog-
nition, image retrieval or visual navigation, the high di-
mensional descriptor suffers from a computational com-
plexity, which makes it unsuitable for time-constrained
applications e.g. SLAM, object tracking, real-time
recognition.

During the past decade, a variety of improvements
were proposed [3, 14, 5, 7, 15, 17]. Such descriptors
were reported to improve the efficiency and matching
accuracy upon SIFT however, in the literature there is
no quantitative comparison of the publically available
implementations (e.g. OpenCV) tested within the same
experimental framework. The aim of this work is to
provide an independent evaluation on common data and
guidance in chosing amongst the recent implementa-
tions when speed and accuracy of matching are the main
criteria.

This research was supported by the Czech Science Foundation
grant GACR P103/12/G084 (OM) and by EU CHIST-ERA and UK
EPSRC funding (KM).

Krystian Mikolajczyk
CVSSP, UK

k.mikolajczyk@surrey.ac.uk

Detectors and descriptors. Efficient computation of
features similar to SIFT is proposed by SURF [3],
which approximates Hessian matrix and gradients by a
set of box-type filters and integral images. A different
idea is proposed by MSER [10] where the regions are
extracted with efficient watershed segmentation.

A very efficient keypoint detector is FAST [14] and
its variants, which compare pixels on a ring centered at a
feature point. Recently proposed ORB [15] detector ex-
tends FAST by efficiently computed orientations based
on the intensity centroid moment. Similarly, BRISK [7]
extends FAST by searching for maxima in a 3D scale-
space.

Rotation invariance is also investigated in MRRID
and MROGH descriptors [6] by pooling local features
based on their intensity orders in multiple support re-
gions. This concept is further exploited in LIOP [17]
together with segmentation based location grid in con-
trast to 4 x 4 regular grid in SIFT or SURF.

A different approach is to use binary descriptors [5,
7, 15]. In contrast to SIFT and SURF and expensive
computing of gradient distributions, a set of simple bi-
nary tests are used together with the Hamming distance
which is computationally cheap on modern architec-
tures with efficient binary xor and population count in-
structions. An example of such descriptor is BRIEF [5],
which is a binary string constructed from a set of inten-
sity comparisons within an image patch.

Efficient data structures. Much research is focused
on improving the efficiency of feature matching via
nearest neighbour (NN) search. Widely used algorithms
in computer vision applications are kd-trees [1, 9, 13]
and hashing methods [16]. Hashing is a fast NN search
approach that relies on projection functions that map
similar data points into the same buckets that can be
efficiently accessed in Hamming space. The kd-tree be-
longs to a category of a geometric data structures, which
is based on iterative partitioning of individual dimen-
sions. Its issues with high dimensional nearest neigh-
bor searching may be overcome by an e-approximate
nearest neighbor (e-ANN) search [2], where search is

terminated if a certain condition is satisfied e.g. maxi-
mum number of leaves visited or a termination parame-
ter which guarantees that the distance to ANN found so
far is smaller than distance to the true NN multiplied by
aconstanti.e. (e + 1)dyny > dann-

The remainder of this paper is organized as follows:
evaluation criteria and overview of datasets are given in
section 2, experimental results are discussed in 3 and
the paper is concluded in section 4.

2 Evaluation framework

We follow the evaluation protocol from [12], which
is based on a number of correct and false matches ob-
tained for a given image pair. However, we evaluate
the matching performance in a database of features that
also contain distractors, that is features from different
images. We use the repeatability score, precision-recall
as well as a speedup factor which are discussed below.

Repeatability score. The descriptor correspondences
are established by using the groundtruth homography as
in [12]. The repeatability score is S4 = A*/A*, with
A™ the number of correspondences and A* the number
of all detected features in a query image, which pro-
jected by a homography are within the reference image.
AT is the number of keypoints for which the overlap
with the projected features A* is more than 50%. [12].

Precision-recall. Precision S = B*/B, is a ratio
between the number of correct matches B* and NN fea-
tures B found in the database. B is obtained by thresh-
olding the NN distance between the query feature F
and the feature found in a database F}; by a factor ty.
The number of correct matches B*, is obtained by ver-
ifying whether the matched features are also the corre-
spondences provided by the groundtruth homographies.
Recall Sp4 = B*/A™ denotes a ratio between the cor-
rect matches B* and correspondences A™.

Speed-up. Speed-up factor St = Ts/Tg is used to
measure the speed efficiency rather than the absolute
time, where T’s is the time for sequential search, T is
the time for efficient matching.

Dataset. The experiments are carried out with Graf-
fiti sequences [12] which consist of eight image se-
quences with different geometric and photometric trans-
formations including rotation, scale change, viewpoint
change, image blur, jpeg compression and change in il-
lumination. Each image sequence is composed by six
images and the ground truth homographies between the
first image and the rest of images in the sequence. The
features from the reference image of every sequence are
used to create the database. In addition, we use fea-
tures from 1000 images from Pascal VOC as matching
distractors. The features detected in all other images

from the Graffiti dataset are used as respective queries
for matching experiment. There are 132 687 query fea-
tures and 786 968 database features. Althought it is not
a large scale database it is sufficient to reliably compare
the speed and matching accuracy of state-of-the-art de-
scriptors.

Implementation details. OpenCV [4] is used for ex-
traction of all keypoints except BRISK, LIOP, MROGH
and MRRID, which are recent descriptors, hence the
binaries from authors are used. The two most exten-
sively used implementations of kd-trees are ANN [2]
and FLANN [13]. The ANN library is used for all ex-
periments.

All the measurements have been taken on a 24
x3.47GHz/12MB cache Intel Xeon X5690, 99GB
RAM, x64 Ubuntu 10.04, the code is compiled by the
GCC 4.4.3 with SSE 4.2 optimization for fast POPCNT.

3 Experimental results

The performance evaluation of recent detectors and
descriptor is presented in this section. First, the speed
and quantity of features extracted by various methods
are discussed. Next, we investigate the accuracy and
speed of fast matching by multiple randomized kd-trees.
Finally, the descriptors in kd-tree setup are compared
against the efficient Hamming distance based matching
of the binary descriptors. All the features are obtained
with default parameters given by their implementation
except FAST for which the threshold was increased to
reduce the number of features. Scales of multiscale
FAST keypoints are increased by a factor of 2 other-
wise the regions from the finest scale level are too small
i.e. 10x10 pixels.

3.1 Feature extraction comparison

The extraction times and quantities of keypoints and
descriptors are compared in this section. All results are
computed on a set of 100 images from Graffiti and Pas-
cal VOC data sets. Table 1 shows the averaged results.

The largest number of keypoints are extracted by
multiscale FAST detector and the least number of re-
gions is provided by MSER. The variation in the num-
ber of features is expected, since the various detectors
respond to different types of image structures. This can
be controlled to a small extent by parameter settings but
the order of numbers remains the same. The most effi-
cient extractor is FAST which is 88 x faster than SURF
and 169x faster than DoG. On average it takes 2ms per
image.

Similar experiment is done for the calculation of de-
scriptors. To make the comparison fair we use the same
number of keypoints extracted by SURF. The results are
summarized in table 2. The fastest descriptor is BRIEF

Table 1. Averaged computation times for
the different detectors
Detector ~ Run time [ms.] ~ Speed-up [-] # keypoints

SURF 176 1.9 2911
DoG 338 1.0 1552
FAST 2 169.0 5158
STAR 17 19.9 849
MSER 60 5.6 483
BRISK 10 33.8 1874
ORB 7 48.3 594

(32 bytes), followed by ORB (32 bytes) and BRISK (64
bytes). Simple binary tests can be performed up to 31 x
or 118 faster than SURF or SIFT, respectively. In gen-
eral, the extraction time scales approximately linearly
with increasing number of features.

The accuracy of detectors is measured by the re-
peatability scores as a function of overlap error and pre-
sented in Fig 1. (a). The best results are obtained by
FAST which produces the largest number of keypoints
and SURF. Note that for DoG we also report the result
for the original implementation (ODoG) which gives
better repeatability than the OpenCV one (DoG).

3.2 Efficient matching

In this section the matching quality and speed-up is
investigated as a function of various parameter settings.
A widely used approach for fast matching of real valued
descriptors is by multiple randomized kd-trees [9, 11].
The descriptors are computed for keypoints extracted
with SURF. We build N sets of descriptors by random
sampling and build a kd-tree for each set. The match-
ing is done by running the query features through all
trees simultaneously. The main trade-off in the kd-tree
based matching is between the speed and the NN ap-
proximation which can be controlled by parameter e.
The matching performance as a function of the number
of trees, NN approximation, and similarity threshold is
presented in Fig. 1 (b)(c)(d).

It should be noted that the curves do not intersect
each other. For various numbers of trees [V, the preci-
sion is comparable while the accuracy loss against ex-
haustive sequential search is approximately 2.5% (Fig.
1 b). Larger differences are in recall (Fig. 1 c); the
smallest loss of 4% is achieved by N = 160 while the
matching is almost 14 890 x faster (Fig. 1 d) due to par-
allelization. For N = 20, the loss in recall is 5% and
speed-up is 1 719.

3.3 Comparison of descriptors

This section gives a comparison of well established
descriptors such as SIFT and SURF against recently
proposed LIOP, MRRID and MROGH. Moreover, all
the real valued descriptors are compared to recent bi-
nary features such as BRIEF, BRISK and ORB. All de-
scriptors are computed for the SURF keypoints.

Table 2. Computation times for the differ-
ent descriptors for 1000 SURF keypoints

Descriptor ~ Run time [ms.] Speed-up [-]

SURF 117.1 3.83
SIFT 448.6 1.00
BRIEF 3.8 118.05
BRISK 10.6 42.32
ORB 4.2 106.80
LIOP 1801.1 0.25
MROGH 2976.8 0.15
MRRID 5625.1 0.08

Real valued descriptors are evaluated in the multi-
ple randomized kd-tree setup. Binary descriptors are
matched in a brute force manner with efficient evalua-
tion of the Hamming distance. To give a fair compar-
ison of binary descriptors speed-up, which can also be
improved by parallelization, matching time is divided
by the number of multiple trees.

Table 3 summarizes the speed-up against the sequen-
tial search of the SURF descriptor. All results are ob-
tained with 40 trees and ¢ = 3, which represent a rea-
sonable trade-off between the precision and time of
matching with respect to the number of features in the
database and descriptor size. The fastest matching is
achieved by BRIEF and ORB descriptors, which are bi-
nary features with 32 bits only. The matching of bi-
nary descriptors is approximately as fast as kd-trees
with SURF and 5.6x faster than SIFT. One can ar-
gue, that the results would be more favorable for SIFT
and SUREF for larger values of €, however the preci-
sion/recall would be much lower. The efficient match-
ing of the binary descriptors has linear computational
complexity, i.e. the results would be more favourable
for kd-trees in the case of large databases. On the other
hand, it is very cheap to extend the feature space of
binary descriptors (e.g. 512 bits BRISK and 256 bits
BRIEF/ORB), while the matching and memory require-
ments of high-dimensional descriptors in the kd-setup
are much more costly.

Table 4 summarizes precision(Sb)/recall(Sba) for all
descriptors. Since we compare descriptors with var-
ious numbers of dimensions, distance, etc., to avoid
clutter we select saturation point s on the performance
curves (c.f. Fig 1. (b)(c)) to report the matching per-
formance. Both, SURF and SIFT are outperformed by
most descriptors. Better results are reached by LIOP,
MROGH and MRRID, while LIOP matching is approx-
imately 4.4 x faster than MROGH and 2.1 x faster than
MRRID. ORB is outperformed by BRIEF, however this
might be explained by the fact, that only one test se-
quence contains in-plane rotation. Although the re-
peatability scores for FAST are high we believe it is due
to the large number of regions which accidentally over-
lap, since its matching performance when combined
with SIFT is very low.

o
>

——sequential

ORB
——BRISK|x
- FAST

Repeatibility
°

o. -»-DoG 035)
——MSER

03 -~-STAR 03

SURF 0.25

ODoG

——sequential

0 15 20 25 30 35 40 45 50 “0 0.02
Overlap Error

(2) (b)

004 006 008 01
similarity threshold

Table 3. Speed-up over the sequential
matching of SURF-SURF for the different
descriptorsand N =40,¢ =3

Descriptor Size [bytes] Time [ms.] Speed-up (ST)
SURF 64 390 859.4
SIFT 128 2 095 160.1
BRIEF 32 370 905.9
BRISK 64 524 640.1
ORB 32 370 905.9
LIOP 144 3466 96.8
MROGH 192 15317 21.9
MRRID 256 7363 45.6

4 Conclusion

This paper reports the matching precision and speed
of recent feature detectors and descriptors in multiple
randomized kd-tree setup and Hamming distance brute-
force search. The recently proposed real valued descrip-
tors such as LIOP, MRRID, MROGH outperform state-
of-the-art descriptors SURF and SIFT in both, preci-
sion and recall, although their efficiency is very low.
Similarly, binary descriptors provide a very efficient
technique for time-constrained applications with good
matching accuracy. Another advantages of binary de-
scriptors are very fast extraction times and very low
memory requirements, since each descriptor has only
32 (BRIEF, ORB) or 64 (BRISK) bytes, respectively.
These descriptors provide comparable precision/recall
results with SURF and SIFT.

References

[1] S. Arya and D. M. Mount. Approximate nearest neigh-
bor queries in fixed dimensions. In SODA '93: ACM-
SIAM Symposium on Discrete algorithms, 1993.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. J. ACM,
45(6):891-923, 1998.

H. Bay, A. Ess, T. Tuytelaars, and L. J. V. Gool.
Speeded-up robust features (surf). CVIU, 110(3), 2008.
G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

(2]

(3]
(4]

0 0.02 0. 0_4 0.06 0.08
similarity threshold

©

()

Figure 1. Evaluation results for multiple randomized kd-trees and SURF descriptors, with N
trees and NN approximations ¢ = 5: a) Correspondence score S, w.r.t overlap error, b) Matching
precision Sp, ¢) Matching recall Sg 4, d) Matching speed-up St w.r.t. sequential matching.

Table 4. Precision/Recall for the different
descriptors and N =40, ¢ =3

Detector Descriptor ~ Precision Recall MAP
SURF SURF 0.485 0513 0334
SURF SIFT 0.525 0.533 0.491
SURF BRIEF 0.517 0.546 0514
SURF ORB 0.448 0470 0437
SURF LIOP 0.581 0.597 0.568
SURF MROGH 0.540 0.567 0.527
SURF MRRID 0.550 0.569 0510
SURF BRISK 0.536 0.553 0.530
BRISK BRISK 0.504 0.527 0.492
ORB ORB 0.493 0495 0.463
FAST SIFT 0.366 0376 0.336

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF:
Binary Robust Independent Elementary Features. In
ECCV, 2010.

B. Fan, F. Wu, and Z. Hu. Rotationally invariant de-
scriptors using intensity order pooling. 7-PAMI, 2011.
S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Binary
robust invariant scalable keypoints. In ICCV, 2011.

D. G. Lowe. Object recognition from local scale-
invariant features. In ICCV, pages 1150-1157, 1999.
D. G. Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60(2):91-110, Nov. 2004.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust
wide-baseline stereo from maximally stable extremal
regions. Image Vision Comput., 22(10):761-767, 2004.
K. Mikolajczyk and J. Matas. Improving sift for fast tree
matching by optimal linear projection. In ICCV, 2007.
K. Mikolajczyk and C. Schmid. A performance evalua-
tion of local descriptors. IEEE T-PAMI, 27(10), 2005.
M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
In VISAPP ICCVTA, pages 331-340, 2009.

E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In In ECCV, 2006.

E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski.
Orb: An efficient alternative to sift or surf. In ICCV,
2011.

J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for scalable image retrieval. In CVPR, 2010.

Z. Wang, B. Fan, and F. Wu. Local intensity order pat-
tern for feature description. In /ICCV, 2011.

(6]
(7]
(8]
(9]

[10]

(11]
(12]

[13]

[14]

[15]

[16]

[17]

