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Abstract

A number of recent approaches to policy learning in 2D
game domains have been successful going directly from
raw input images to actions. However when employed in
complex 3D environments, they typically suffer from chal-
lenges related to partial observability, combinatorial explo-
ration spaces, path planning, and a scarcity of rewarding
scenarios. Inspired from prior work in human cognition
that indicates how humans employ a variety of semantic
concepts and abstractions (object categories, localisation,
etc.) to reason about the world, we build an agent-model
that incorporates such abstractions into its policy-learning
framework. We augment the raw image input to a Deep Q-
Learning Network (DQN), by adding details of objects and
structural elements encountered, along with the agent’s lo-
calisation. The different components are automatically ex-
tracted and composed into a topological representation us-
ing on-the-fly object detection and 3D-scene reconstruction.
We evaluate the efficacy of our approach in “Doom”, a 3D
first-person combat game that exhibits a number of chal-
lenges discussed, and show that our augmented framework
consistently learns better, more effective policies.

1. Introduction

Recent approaches to policy learning in games [30, 29]
have shown great promise and success over a number of
different scenarios. A particular feature of such approaches
is the ability to take the visual game state directly as input
and learn a mapping to actions such that the agent effec-
tively explores the world and solves predetermined tasks.
Their success has largely been made possible thanks to the
ability of deep reinforcement learning (deepRL) networks,
neural networks acting as function approximators within
the reinforcement-learning framework. A particular variant,
Deep Q-Learning Networks (DQN), has been widely used
in a range of different settings with excellent results. It em-
ploys convolutional neural networks (CNN) as a building
block to effectively extract features from the observed input
images, subsequently learning policies using these features.

Figure 1. Motivation: As the agent explores the environment, the
first-person-view (top) only sees a restricted portion of the scene,
whereas in the semantic map (bottom), the effect of exploration is
cumulative, indicating both type and position.

For the majority of scenarios that have been tackled thus
far, a common characteristic has been that the domain is
2-dimensional. Here, going directly from input image pix-
els to learned policy works well due to two important fac-
tors: i) a reasonable amount of the game’s state is directly
observable in the image, and ii) a combination of a lower-
dimensional action space and smaller exploration require-
ments result in a smaller search space. The former ensures
that the feature extraction always has sufficient information
to influence policy learning, and the latter makes learning
consistent features easier. Despite stellar success in the
2D domain, these models struggle in more complicated do-
mains such as 3D games.

3D domains exhibit a multitude of challenges that cause
the standard approaches discussed above to struggle. The
introduction of an additional spatial dimension, first intro-
duces notions of partial observability and occlusions, and
secondly causes complications due to viewpoint variance.
Not only is the agent viewing a relatively smaller portion
(volume) of the environment, it also must reconcile observ-
ing a variety of other objects in different contexts under pro-
jective transformations. Furthermore, adding an extra di-
mension also combinatorially complicates matters in terms
of exploration of the environment. This typically manifests
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itself in the form of sparse feedback in the learning process
because the agent’s inability to explore the environment di-
rectly penalizes its learning capacity. Moreover, complica-
tions in exploration directly affect any planning that may be
required for tasks and actions. Finally, with larger search
and state spaces comes the likelihood that any rewards that
might help move learning along are also harder to come by.

Sutton et al. (1999) [42] propose an extension of the
RL framework that can potentially learn hierarchical poli-
cies. However this, and similar methods, have not been
able to scale beyond small gridworld domains [1]. Kulka-
rni et al. (2016) [24] proposes to tackle environments with
delayed rewards by coupling options learning and intrinsi-
cally driven exploration methods. Options are however no-
toriously hard to train, requiring a great deal of effort before
intrinsically motivated agents can safely deal with generic
hierarchical spatial domains.

Prior work in behavioural modelling and cognitive neu-
roscience suggests that humans employ particular, highly
specialised mechanisms to construct representations of, and
reason about, the world. These typically take the form of
semantic concepts and abstractions such as object identity,
categories, and localisation. Freedman and Miller (2008)
[14] review evidence from neurophysiology that explore the
learning and representation of object categories. Burgess
(2008) [4] discusses evidence from neuroscience for the
presence and combination of different viewpoints (e.g., ego-
centric) and the role of representing layouts (e.g., bound-
aries and landmarks) in the spatial cognition process. Moser
et al. (2008) [31] also discuss the presence of highly spe-
cialised representation regions in the brain that encode lo-
calisation and spatial reasoning. Denis and Loomis (2007)
[7] provide a review from behavioural psychology on the
subject of spatial cognition and related topics.

In this paper, we take inspiration from such work to pro-
pose a system that explicitly constructs a joint semantic
and topological representation of the state, and further aug-
ment its input with this representation (Fig. 1) in an attempt
to learn policies more effectively in such complex 3D do-
mains. To this end, we construct a novel model that incor-
porates an automatic, on-the-fly scene reconstruction com-
ponent into a standard deep-reinforcement learning frame-
work. Our work provides a streamlined system to imme-
diately enhance current state-of-the-art learning algorithms
in 3D spatial domains, additionally obtaining insight on the
efficacy of spatially enhanced representations against those
learned in a purely bottom-up manner.

2. Related work

2.1. Deep Reinforcement Learning

Reinforcement Learning is a commonly employed set of
techniques for learning agents that can execute generic and

interactive decision making. Its mathematical framework is
based on Markov Decision Processes (MDPs). An MPD is
a tuple (S,A, P,R, γ), where S is the set of states, A is the
set of actions the agent can take at each time step t, P is
the transition probability of going from state s to s′ using
action a, R is the reward function defining the signal the
agent receives after taking actions and changing states, and
γ is a discount factor. The goal of Reinforcement Learning
is to learn a policy π : s → a that maximises the expected
discounted average reward over the agent run. A commonly
used technique to learn such a policy is to learn the action-
value function Qπ(s, a) iteratively, so as to gradually ap-
proximate the expected reward in a model-free fashion.

They have, however, traditionally struggled to deal with
high-dimensional environments, due in large part to the
curse of dimensionality. Deep Reinforcement Learning al-
gorithms such as Deep-Q Networks extend model-free RL
algorithms like Q-Learning to use Deep Neural Networks
as function approximators, implicitly capturing hierarchies
in the state representation that make the RL problem scale
even to visual input states. Unfortunately, they still suffer
from some of the problems that standard RL cannot deal
with:

• delayed reward signals require non-stochastic explo-
ration strategies [24];
• learning to abstract policies hierarchically is currently

an unsolved but key problem to make RL scale to tasks
requiring long-term planning [1];
• partial observability in state requires use of models that

can encode at least short-term memory, specially when
training end-to-end [17].

Some recent work has also explored ways to develop
agents that can learn to play Doom. Lample and Chaplot
(2016) [25] take the approach of using a variant of DRQN
[18] together with some game features extracted directly
from the game environment through its data structures. Our
method is similar in the spirit, but can be applied to any
environment with a significant 3D navigation component,
as our SLAM and object recognition pipeline is not intrin-
sically dependent to the VizDoom platform. Another in-
teresting approach is the one presented by Dosovitskiy and
Koltun (2016) [8]. This approach, featured as the winner
in the VizDoom competition [20], changed the supervision
signal from a single scalar reward to a vector of measure-
ments provided by the game engine. This is used to train
a network that, given the visual input, the current measure-
ments, and the goal, predicts future measurements. The ac-
tion to perform is then chosen greedily according the pre-
dicted future measurements. This is orthogonal to our ap-
proach; both algorithms could benefit from the novelties in-
troduced by the other, however we leave such an extension
on our part for the future.



2.2. Simultaneous Localization and Mapping

Early approaches to camera-pose estimation relied on
matching a limited number of sparse feature points be-
tween consecutive video frames [6]. A common draw-
back of such solutions is relatively quick error accumula-
tion which results in significant camera drift. This may be
addressed with PTAM [22], which achieved globally op-
timal solutions at real-time rates by running bundle adjust-
ment in a background thread. Further improvements include
re-localization, loop-closure detection, and faster match-
ing with binary features [5, 32, 23]. Recently, matching
hand-crafted features has been replaced by semi-dense di-
rect methods [10]. However, these approaches only provide
very limited information about the environment.

A more complete map representation is provided by
dense approaches [41, 34, 27]. They estimate dense depth
from monocular camera input, but their use of a regu-
lar voxel grid limits reconstruction to small volumes due
to memory requirements. KinectFusion-based approaches
[33] sense depth measurements directly using active sen-
sors and fuse them over time to recover high-quality sur-
faces, but they too suffer from the same issue. This draw-
back has since been removed by scalable approaches that
allocate space only for those voxels that fall within a small
distance of the perceived surfaces, to avoid storing unnec-
essary data for free space [35]. All approaches mentioned
above assume the observed scenes are static. This assump-
tion can be relaxed by full SLAM with generalized (mov-
ing) objects or some of its more efficient variants [45, 3],
but this is beyond the scope of this paper.

Approaches such as RatSLAM [28] and its derivatives
propose instances of SLAM based on models inspired by bi-
ological agents, showing promising results in environments
where the navigation task requires some reasoning about
landmarks and non-Cartesian grid representations.

2.3. Object detection

Early approaches to object detection include constella-
tion models and pictorial structures [13]. The very first
object detector capable of real-time detection rates was
[44], who solved an inherent problem of sliding-window
approaches by learning a sequential decision process that
rapidly rejects locations which are unlikely to contain any
objects. This concept has since then evolved into a dis-
tinct set of algorithms called proposals, whose only goal
is to quickly localize potential objects [19]. These loca-
tions are then fed into more complex classifiers to determine
the class label (or assign a background). Deformable part
models [11] are a prominent example of such, being able
to represent highly variable object classes. Recently, it has
been shown that deformable part models can be interpreted
as a convolutional network [16], which led to replacement
of handcrafted features by convolutional feature maps [15].

Finally the Faster-RCNN [36] combines the region propos-
als and object detector into a single unified network train-
able end-to-end with shared convolutional features which
leads to very fast detection rates.

3. Semantic Mapping
In this paper, we introduce an algorithm based on the

Deep Q Network (DQN) that has been successfully applied
to many Atari games [30]. Inspired by prior work in human
cognition that indicates how humans employ a variety of se-
mantic concepts and abstractions (object categories, local-
ization, etc.) to reason about the world, we build an agent-
model that incorporates such abstractions into its policy-
learning framework. We augment the first-person raw im-
age input to a DQN by adding details about objects and
structural elements encountered, along with the agents lo-
calization to cope with complex 3D environments. This is
represented as a 2D map (top-down view) encoding three
distinct sources of information: i) positions of static struc-
tures and obstacles such as walls, ii) position and orienta-
tion of the agent, and iii) positions and class labels of im-
portant objects such as health packs, weapons and enemies.
Our representation is being updated over time as the agent
explores the environment. This allows the agent to keep
information about areas observed in the past and build an
aggregated model of the 3D environment, as indicated in
Fig. 1. Such representation allows the agent to behave prop-
erly even with respect to the elements no longer present in
the first-person view.

Semantic representation. As the agent explores the en-
vironment, we simultaneously estimate localization of the
agent and obstacles (e.g., walls) in order to build the map of
the surrounding 3D environment from the first-person-view
at each frame. In parallel, we detect important objects in
the scene such as weapons and ammunition. And since we
want to minimize the dimensionality of the augmented rep-
resentation to allow more efficient learning, we project all
semantic information onto a single common 2D map of a
fixed size. Essentially a “floor-plan” with the positions of
objects and agents. This is achieved by encoding different
entities by different gray-scale values, in the form of heat-
maps (cf., bottom right of Fig. 1).

Our representation encodes position of walls and ob-
stacles (white) extracted directly from the depth data pro-
vided by the VizDoom API. Information about agent’s po-
sition and orientation on the 2D map is represented as a
green directed arrow. We also want to provide the agent
semantic information about a variety of objects present
in the environment. For Doom, we encode the follow-
ing five object categories: monsters (red), health packs
(purple), high-grade weapons (violet), high-grade ammuni-
tion (blue), other weapons and other ammunition (yellow).



Figure 2. System overview: (a) Observing image and depth from VizDoom. Running Faster-RCNN (b) for object detection and SLAM
(c) for pose estimation. Doing the 3D reconstruction (d) using the pose and bounding boxes. Semantic maps are built (e) from projection
and the DQN is trained (f) using these new inputs.

Since these objects could either move or be picked up by
another player (e.g., deathmatch scenario), we project only
those objects that are visible in the current view onto the
common map. This could be addressed by more advanced
data association techniques such as [45, 3], but this is be-
yond the scope of this paper.

4. Recognition and Reconstruction
Here, we describe the process of automatically creating

semantic maps on-the-fly. Fig. 2 depicts the architecture of
our pipeline. As input, we use the image data provided by
the VizDoom API, i.e., RGB video frames visualizing the
3D environment from agents (first person) perspective and a
z-buffer providing depth information of the observed scene.
In order to build a map of the 3D environment, we need
to detect and remove all objects from the z-buffer since we
want to i) provide explicit semantic information about vari-
ous objects (monsters, weapons, etc.) and ii) avoid nuisance
visual events such as weapon discharges in the depth buffer.
We also need to know the current pose of the camera, so
we run a camera-pose tracker in parallel with the object de-
tector. Then, we project the observed scene on a common
3D map and provide its 2D visualization (top-down view) to
the agent. Note, that the mapping system could work even
without access to the z-buffer, i.e., using solely the RGB
data [9]. We now describe the components of our pipeline
(object detection, camera pose estimation and map fusion)
in greater detail.

4.1. Object detection

To detect the objects, we use the Faster-RCNN object
detector [36], which is a convolutional network that com-
bines the attention mechanism (region proposals) and ob-
ject detector into a single unified network, trainable end-to-
end. The first module is a deep fully-convolutional network

that simultaneously predicts object bounds and objectness
scores at each position, and the second module is the Fast
R-CNN detector [15] that uses the proposed regions. Since
both modules share the same features, it offers very fast de-
tection rates.

As input, we use the RGB image resized to the standard
resolution of 227 × 227 pixels. Next, the image is pushed
through the network and a convolutional feature map is ex-
tracted. We use the model of Zeiler and Fergus (2014)
[47] to extract these feature maps. To generate region pro-
posals, this feature map is processed in a sliding-window
manner with two fully-connected layers predicting position
of the region proposal and a binary class label indicating
“objectness”. For each region proposal, the corresponding
(shared) feature maps are fed into 2 fully-connected layers
with 2048 units that produce soft-max probabilities over K
object classes (and background) and positions of bounding
boxes of the detected objects. We trained this object detec-
tor on five classes corresponding to objects and monsters
that are projected onto the common map.

4.2. Camera pose estimation

Despite using ground-truth depth maps provided by the
z-buffer, ICP-like approaches [2] do not work well in game
environments since such environments lack many geometri-
cal features (they are typically represented as textured pla-
nar surfaces to allow fast rendering). Hence, we use the
sparse feature-based ORB-SLAM2 for 6-DoF camera-pose
estimation [32]. As input, we use RGB images down-
sampled to 320× 240 pixels and a z-buffer.

First, we build an eight-level image pyramid with a scale
factor sf = 1.2. Then, we extract a set of sparse local fea-
tures representing corner-like structures. For this, we use
oriented multi-scale FAST detector [37] with an adaptively-
chosen threshold to detect a sufficient number of features.



The feature extraction step is biased by bucketing to ensure
features are uniformly distributed across space and scale (at
least 5 corners per cell). A constant-velocity motion model
predicting the camera pose is used to constrain matching
onto local search windows. The extracted features are as-
sociated with local binary-patterns (256 bits ORB [38]) and
matched using a mutual-consistency check. A robust es-
timate is performed by RANSAC [12] with least-squares
refinement on the inliers.

Robustness is further increased by keyframes that reduce
drift when the camera viewpoint does not change signifi-
cantly. If tracking is lost, the current frame is converted
into a bag-of-words and queried against the database of
keyframe candidates for global re-localization. The camera
is re-localized using the PnP algorithm [26] with RANSAC.
Global consistency is achieved by loop-closing pose-graph
optimization that distributes the loop-closing error along the
graph in a background thread [23].

4.3. Mapping

Once we have the camera poses and a object-masked
depth map, we can project the current frame on a common
3D map. At each frame k, we back-project all image pixels
i into the current camera reference frame to obtain a vertex
map Vk

i

Vk
i = dkiK

−1u̇i. (1)

Here, K−1 denotes the inverse of the camera calibration
matrix (using parameters from the VizDoom configuration
file), u̇i = [ui, vi, 1]> denote image pixels in homogeneous
coordinates, and dki is depth. We also want to maintain
previously-visited areas in memory so we project the (ho-
mogenized) vertex map V̇k

i = [Xi, Yi, Zi, 1]> from cam-
era to global reference frame as Vg

i = Tg,kV̇
k
i , where

Tg,k = {R, t|R ∈ SO3, t ∈ R3} is a rigid body transfor-
mation mapping the camera coordinate frame at time k into
the global frame g. Since the fixed volumetric 3D repre-
sentation severely limits the reconstruction size that can be
handled, we use the hash-based method of [35].

The resulting 2D map is generated by placing a virtual
camera at the top-down view, ignoring all points above and
below some height thresholds to remove areas that would
otherwise occlude the map, such as ceilings and floors.

5. Experiments
In this section, we demonstrate the advantage of adding

the semantic map presented in Sec. 3 to the standard first-
person view while working inside the “Doom” environ-
ment. Code and results for these experiments will be made
available online. We use the ViZDoom [21] platform for all
our experiments. It is built on top of the first person combat
game “Doom”, and allows easy synchronous control of the
original game, where execution is user-controlled, getting

Settings Rewards

Random Play 0.00
NOSM (player/objects) 2.94
OSM (no FPV) 3.16
baseline 3.45
NOSM (objects) 3.53
NOSM (walls) 3.92
Prior Dueling DQN 5.69
RSM (localisation) 5.87
OSM (localisation) 6.62
RSM 6.91
OSM 9.50

Human Player 45.00

Table 1. Best mean test rewards for the different frameworks run.
Note that our pipeline performs strongly in comparison to both the
baselines, and to the ablated versions considered. Also note that
although the OSM is the best of the artificial systems considered,
our pipeline, with the RSM is a lot closer to it than the others.

the first-person-view from the engine at the current step,
and stepping forward by sending it keystrokes. The envi-
ronment where the player performs is specified as scenario.

In this paper, we focus on the deathmatch scenario, in
which the map is a simple arena as can be seen in Fig. 1
and the goal is to eliminate as many opponents as possible
before being eliminated. A proficient agent for this scenario
would be the one that is efficient at eliminating enemies
whilst being able to both collect more effective weapons and
keep its own health as high as possible. This scenario was
the basis of the CIG 2016 competition [20] where different
autonomous agent competed in a deathmatch tournament.

The quantitative results for all the experiments carried
out are summarised in Tab. 1. The individual features of the
experiments run, and the insights obtained from these runs,
are described in subsequent sections, following detailed dis-
cussion of the various components of our framework.

Recognition and Reconstruction. As described in
Sec. 4.1, we use the Faster-RCNN detector and feed it
with the RGB image given by the platform. We use a net-
work pre-trained on Imagenet [39] that we fine-tuned on
a dataset consisting of 2000 training and 1000 validation
examples extracted from the ViZDoom engine, performing
5-fold cross-validation. These images were manually anno-
tated with ground-truth bounding boxes corresponding to 7
classes: monsters, health packs, high-grade weapons, high-
grade ammunition, other weapons/ammunition, monsters’
ammunition, and agent’s ammunition. After fine-tuning,
the model achieved an average precision of 93.21%. The
reconstruction system presented in Sec. 4.2 uses the RGB-
D images provided by the VizDoom platform.



Policy Learning. We use the DQN framework from [30]
to perform policy learning with our augmented features.
The only modification to the original algorithm is the CNN
architecture that needs to be able to cope with the extended
state. The first person view (FPV) images are resized to
84 × 84 pixel, converted to grayscale and normalized. The
semantic 2D map is represented as a single channel image
of the same resolution. The different object categories are
encoded by different grayscale values. For the experiments
that use both the FPV and the 2D map, we concatenate them
along the channel dimension. The Q network is composed
of 3 convolutional layers having respectively, 32, 64 and 64
output channels with filters of sizes 8×8, 4×4 and 3×3 and
4, 2 and 1 strides. The fully-connected layer has 512 units
and is followed by an output SoftMax layer. All hidden lay-
ers are followed by rectified linear units (ReLU). Adding the
2D map associated to each FPV image changes input chan-
nels from 4 to 8 for the first convolutional layer, and thus
increase the number of parameters from 77824 to 86016, a
10% increase. For training, we use the hyper-parameters
from [29] and RMSProp for all experiments.

Action Space. The action space for this environment is
an order of magnitude larger than the Atari environment.
Indeed, “Doom” accepts any combination of 43 unique
keystrokes as input. Following the observation that a hu-
man player uses only a small subset of these combinations
to play the game, we recorded actions performed by hu-
mans and selected a representative subset. These actions
can be divided into three groups: i) actions corresponding
to a single keystroke allowing the agent to move and shoot,
ii) combinations of two keystrokes corresponding to mov-
ing and shooting at the same time and iii) actions associated
with switching weapons. We arbitrarily chose the top 13
actions performed by humans, categorising them into the 3
groups mentioned above. We did so primarily to constrain
the action space to a reasonably tractable size, while still
maintaining richness of actions that could be performed in
the environment.

Reward Function. Our reward function is designed to
capture the primary goal of the agent: to eliminate oppo-
nents. We represent this as ∆k, an indicator variable for an
opponent being eliminated since the last step. To encour-
age the agent to live longer, we also consider ∆h, the health
variation between the current step and the previous step. We
explicitly structure the health reward to be zero-sum in or-
der to remove any biases towards preserving health to the
detriment of the primary goal. The reward R incorporating
both these terms is written as: R = ∆h/100 + ∆k where
∆h ∈ [−100; 100] and ∆k ∈ {0, 1}

Evaluation Metrics. We use two different scores to eval-
uate and compare different architectures. The main metric

is the reward function as it allows observing the agent’s be-
haviour with respect to the primary objective. The second
reported metric is the number of steps the agent has lived.
This is important as living increases the agent’s chance to
kill opponents and increase its reward in the longer term.
All reported metrics are mean values over 100 test games.

Time Complexity. The complete framework has to be
fast enough to allow playing at the game’s native speed. To
do so, we run the object detector in parallel with the camera-
pose estimation. On average, the detector requires 60ms to
process an image while camera-pose estimation and latency
take 12ms and 10ms respectively. Semantic map construc-
tion takes 25ms, and DQN training requires 18ms to pro-
cess a frame and perform one learning step. The complete
pipeline is able to process, on average, 10 images per sec-
ond. Given that inside the ViZDoom platform each step
represents 4 frames of the game (as does the Atari emula-
tor), our system plays at approximately 40 frames per sec-
ond, which exceeds typical demands of gameplay. All ex-
periments were run on a Intel Core i7-5930K machine with
32GB RAM and one NVidia Titan X GPU.

Figure 3. (top) Average reward. (bottom) OSM vs. NOSM.

5.1. Oracle Semantic Maps (OSM)

The first set of experiments allows us to evaluate the ef-
ficacy of our semantic representation. We first isolate po-
tential errors introduced by the recognition and reconstruc-



tion pipeline by extracting ground-truth information about
classes and positions of all objects that are used in the se-
mantic map representation. In other words, this experiment
presents the results we would get if we had perfect detection
and reconstruction, and is used as an “oracle”.

As the baseline, we use the standard DQN approach
trained solely on the first person view images (referred to
as baseline in the following). This baseline is compared to
i) model trained with both, the first person view and the 2D
map encoding ground-truth walls and player position (lo-
calisation OSM) ii) model trained with both, the first per-
son view augmented by the complete 2D maps containing
ground-truth walls and positions of player and objects.

As can be seen in Fig. 3, the baseline is not able to learn
as good policy as model with our semantic maps. Moreover,
we see that the baseline model quickly reaches a plateau and
does not improve afterwards. Adding a 2D map of the en-
vironment (i.e., without objects) allows the agent to learn a
significantly better policy as the reward is almost doubled
compared to the baseline. Adding the objects seen by the
agent onto this map gives another significant improvement
leading to reward of 10 compared to the 3 − 4 achieved by
the baseline. Moreover, we can see that the network pro-
vided with the complete 2D map (including objects) is able
to learn faster than the models provided with fewer infor-
mation. This result proves that providing higher level, com-
plex representation of the surrounding of the agent allows it
to learn faster and converge to a better policy.

Figure 4. The top maps for each column are all taken from the
oracle. The maps on the bottom are (l) Oracle map with noise on
player and objects’ positions. (m) Oracle map with noise on the
walls. (r) Semantic map reconstructed, independent of the oracle,
by our pipeline.

5.2. Noisy Oracle Semantic Maps (NOSM)

Unfortunately, the detection and reconstruction pipelines
are often imperfect in real world scenarios. Next, we study
the impact of providing a very poor spatial representation to
the agent. To do that, we add a significant amount of noise

to the ground-truth data extracted from the game to see how
the DQN framework reacts.

First, we consider the case where we add the same Gaus-
sian noise to the agent’s and all objects’ positions, refer-
enced as NOSM (player/objects), meaning that these ele-
ments are not properly positioned with respect to the static
objects. Fig. 4(l) shows the results of adding that noise.
The OSM map is shown on top and its noisy version is
shown below. One thing to note here is that these maps
have gray scale pixel values to define different abstractions
and objects. This gray scaled format was used for training
as discussed in the previous sections. Next, we add Gaus-
sian noise to the positions of walls, referenced as NOSM
(walls), meaning that some element that appear accessible
in the 2D map cannot be reached in the real environment.
Fig. 4(m) shows the results of adding that noise.

As can be seen in Fig. 3(bottom), this very high amount
of noise in the 2D maps prevent the DQN framework to
learn a good policy. However, it is important to note that in
the worst case, the noisy version matches the performances
of the baseline as the network learns to ignore it.

5.3. Reconstructed Semantic Maps (RSM)

In Sec. 5.1, we have shown the efficacy of Q-learning
with ground-truth version of our semantic maps. As a
proof of concept, we now evaluate performance with the
real maps generated on-the-fly by the approach described
in Sec. 4 (RSM). This experiment allows us to evaluate
the quality of the policy that can be learned when using
the standard detection and mapping techniques without any
extra engineering. In other words, we measure the drop
in performance caused by imperfect object detection and
SLAM in a real world scenario with respect to the oracle.
The difference between the OSM and the RSM is seen in
Fig. 4(r). Here, the semantic categories are coloured instead
of greyscale levels for emphasis.

As seen in Fig. 5(l), the reconstructed map leads to sig-
nificantly better results than the baseline. Even though it
doesn’t match the oracle, we clearly see that the RSM is
much closer to the OSM than the baseline. The remaining
gap can be further reduced with progress in the field.

5.4. Prioritized Duel DQN

Combination of the prioritized experience replay [40]
and dueling network architecture [46] has demonstrated su-
perior results on 57 Atari games (2D environment) com-
pared to the vanilla DQN approach that is the baseline con-
sidered above. In this experiment, we compare this success-
ful model (referred as dDQN) with the basic DQN model
augmented with our semantic maps.

Fig. 5(m) shows that while the combination of PRL with
dual DQN achieves better results than the DQN baseline,
the model with our semantic maps, despite trained with the



Figure 5. (l) OSM vs. RSM (m) Our method vs. dual DQN with prioritized ER. (r) OSM vs. DQN on mean run-length

basic DQN, outperformed the PRL with dual DQN trained
on first person views. It is also interesting to note that these
two approaches are orthogonal and could be combined. We
leave this study for the future work.

5.5. Mean Run Length

As can be seen in Fig. 5(r), the agent trained with se-
mantic maps is able to typically live longer than the one
trained only on the first-person view. This is a consequence
of the fact that the OSM agent inherently attempts to build
a representation of the environment it is in, which helps it
adapt better from arbitrary initialisation points. The base-
line however, does not have access to such capabilities, and
hence performs incoherently in these situations. In keeping
with the general characteristics of the results seen thus far,
the RMS agent typically underperforms in relation to the
ORM agent, but still significantly outperforms the baseline.

6. Discussion and Conclusion
We proposed to augment the standard DQN model with

semantic maps; a representation that provides aggregated
information about the 3D environment around the agent.
We have demonstrated the efficacy of our approach with
both oracle maps, and automatically reconstructed maps us-
ing object detection and SLAM, demonstrating the efficacy
of our approach with standard computer-vision recognition
and reconstruction pipeline (e.g., for road scene understand-
ing [43]) and a standard off-the-shelf policy learner (DQN).

Our central thesis is exploring the benefits of semantic
representations augmenting the directly-from-pixels learn-
ing approach typically employed. While we do not claim
major contributions to policy-learning algorithms them-
selves, the effort nonetheless provides insight on the ef-
ficacy of such representations against those learned in a
purely bottom-up manner. It also potentially serves as a
benchmark for effectiveness of representations learned in
a purely bottom-up manner. Moreover, our approach has
the potential to extend and scale beyond the Doom environ-
ment by virtue of its applicability to any environment with
a reasonable number of potential other entities and the ex-
tractability of 3D information.

In terms of future directions, we would like to extend our
framework along a variety of different axes. One particu-
lar direction is improving our resilience to layered environ-
ments as we are currently unable to represent environments
such as buildings (“stacked floors/levels”). Another direc-
tion involves relaxing the metric constraints that our maps
are currently constructed under. Better localisation and se-
mantic representations could exist that do not necessarily
require metric reconstruction, but perhaps a more relativis-
tic, graph-based approach. And finally, we are interested in
extending our experiments to incorporate more maps (be-
yond the deathmatch scenario we currently employ), and
elicit qualitative judgments of the learned gameplay.
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