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Abstract Deep generative modelling for human body

analysis is an emerging problem with many interesting

applications. However, the latent space learned by such

approaches is typically not interpretable, resulting in

less flexibility. In this work, we present deep genera-

tive models for human body analysis in which the body

pose and the visual appearance are disentangled. Such

a disentanglement allows independent manipulation of

pose and appearance, and hence enables applications

such as pose-transfer without specific training for such

a task. Our proposed models, the Conditional-DGPose

and the Semi-DGPose, have different characteristics.

In the first, body pose labels are taken as condition-

ers, from a fully-supervised training set. In the sec-

ond, our structured semi-supervised approach allows

for pose estimation to be performed by the model it-

self and relaxes the need for labelled data. Therefore,

the Semi-DGPose aims for the joint understanding and

generation of people in images. It is not only capable

of mapping images to interpretable latent representa-

tions but also able to map these representations back

to the image space. We compare our models with rele-

vant baselines, the ClothNet-Body and the Pose Guided

Person Generation networks, demonstrating their mer-

its on the Human3.6M, ChictopiaPlus and DeepFashion

benchmarks.
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1 Introduction

Human body analysis has been a long-standing goal

in computer vision, with many applications in human-

machine interaction, health-care, shopping, sports, en-

tertainment and gaming [2,64,80,82,97]. Popular ap-

proaches to this problem have focused on supervised

learning of discriminative models [12,13,15,103], which

map visual inputs (images or videos) to suitable ab-

stract representations (e.g. human body pose). While

these approaches do exceptionally well on their pre-

scribed task, as evidenced by their performance on pose

estimation benchmarks [3,37,41], they fall short due to:

a) reliance on fully-labelled data, and b) the inability

to generate novel data from the abstractions.

The former is a fairly onerous shortcoming, partic-

ularly when one is dealing with real-world visual data,

as it requires a substantial amount of human time and

effort to annotate. Thus, being able to relax the reliance

on labelled data is a highly desirable goal. The latter,

states a rather significant limitation, the incapacity to

manipulate abstractions directly with the aim of gen-

erating novel visual data. For instance, changes in the

pose of an arm cannot be used for the generation of

images or videos in which that arm is correspondingly

displaced.

Generative models, in contrast to discriminative

ones, enable the analysis-by-synthesis of the human

body. With them, ideally, one could generate images

of humans in diverse combinations of body poses and

appearances, i.e. clothing, skin colours, hairstyles, and
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(a) Generating different appearances (c) Pose estimation and
pose-transfer

(b) Generating different poses (d) Direct manipulation

Fig. 1 Sampled results from our deep generative models for images of people. (a) For a given pose (first image),
we show some samples of appearance. (b) For a given appearance (first image), samples of different poses. (c) For an estimated
pose (first image) and a given appearance (second image), we show a generated sample combining the pose of the first image
with the appearance of the second. (d) For manipulated poses (first image) and a given appearance (second image), it can
hallucinate people in the scene.

scenarios. This has many potential applications. For

instance, it can be used for performance capture and

reenactment of RGB videos, as already showcased for

faces [90], and still incipient for human bodies [4,14].

It can also be used to generate images in user-specified

poses, to enhance and augment datasets with minimal

annotation effort.

Recently, such approaches have been commonly for-

mulated as deep generative models (DGMs) [29,47,72]

– an extension of standard generative models that in-

corporate neural networks as flexible function approxi-

mators. These models are particularly effective in com-

plex perceptual domains such as computer vision [49],

language [62], and robotics [102], effectively delegating

bottom-up feature learning to neural networks, while si-

multaneously incorporating top-down probabilistic se-

mantics into the model. They solve both the deficiencies

of discriminative methods discussed above by a) em-

ploying unsupervised learning, thereby removing the

need for labels, and b) embracing a fully generative

modelling.

However, DGMs introduce a new problem –

the learnt abstractions, or latent variables, are not

human-interpretable. This lack of interpretability is

a by-product of the unsupervised learning of rep-

resentations from data. The learnt latent variables,

usually represented as a smooth high-dimensional

manifold, do not have the consistent semantic meaning

as different sub-spaces in this manifold can encode

arbitrary variations in the data. This is particularly

unsuitable for our purposes as we would like to view

and manipulate the latent variables, e.g. the body

pose.

In order to ameliorate the issue mentioned above,

while still eschewing reliance on fully-labelled data, we

rely on a structured semi-supervised variational autoen-

coder (VAE) framework [46,84]. Here, the model struc-

ture is assumed to be partially specified, with consis-

tent semantics imposed on some interpretable subset of

the latent variables (e.g. pose), and the rest is left to

be non-interpretable, although referred by us here as

appearance. Weak (semi) supervision acts as a means

to constrain the pose latent variables to actually en-

code the pose. This gives us the full complement of

desirable features, allowing a) semi-supervised learn-

ing, relaxing the need for labelled data, b) generative

modelling through stochastic computation graphs [79],

and c) interpretable subset of latent variables defined

through the model structure.

In this context, we present a structured semi-

supervised VAEGAN architecture, the Semi-DGPose,

in which we further extend structured semi-supervised

models [46,84] with a discriminator-based loss function

from generative adversarial networks (GANs) [29,50],

formulating it as a principled and unified probabilistic

framework. To our knowledge, it is the first structured

semi-supervised deep generative model of people

directly learned in the natural image (or natural

scene) space. This allows the method to directly learn

the intricacies in the formation of natural (i.e. real)

images. However, it is important to mention that

natural images, in contrast to artificial visual stimuli

(e.g. segmentation masks, binary masks, or pose

vectors), have complex statistical structure and are

much more challenging to parameterised [27,44,85].

Consequently, methods that work well with the latter

may not succeed when tackling the former [22,48]. In

contrast to previous work [51,56,57,83,98], our model

directly enables: i) semi-supervised pose estimation;

and ii) indirect pose-transfer without specific training
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for such a task, both of which are tested and verified

by experimental evidence.

Additionally, as an intermediate step in the inves-

tigation towards our main contribution, we propose

a conditional-VAEGAN model, dubbed Conditional-

DGPose. It is less distinct from previous art [51,

56], however, still differently from earlier work in

the literature, it has: i) allowed pose manipulation

on extreme cases, e.g. by performing cross-domain

pose-transfer and by hallucinating multiple people, in

a variety of unseen or even unrealistic poses; and ii)

achieved state-of-the-art results on image reconstruc-

tion conditioned on pose, outperforming the closest

related comparable baseline [51]. We illustrate some

capabilities of our models in Fig. 1.

The present paper builds upon our previous ap-

proaches [6,7] with further theoretical and technical

details, evaluation, and discussion. Here, we present

in full our comprehensive deep generative model

framework for human body analysis in images. Along

with an overview of VAEGAN models, this enables us

to shed light on differences and similarities between

conditional-VAEGANs and structured semi-supervised

VAEGANs. More precisely, we provide additional eval-

uations of our Conditional-DGPose and Semi-DGPose

models on the most relevant benchmarks in the liter-

ature, the Human3.6M [37], the ChictopiaPlus [51],

and the DeepFashion [54] datasets. We also provide

new qualitative and quantitative comparisons with the

Pose Guided Person Generation (PG2) baseline [56].

The application of our models to real images and the

results obtained are essential to show the relevance

of interpretable and structured modelling. This em-

phasise the effectiveness of the proposals, despite the

significant challenge of jointly aim for understanding

and generating people in images. In summary, our

main contributions are:

i) a comprehensive framework for the joint under-

standing and generation of people in images, not only

capable of mapping images to interpretable latent rep-

resentations but also capable of mapping these repre-

sentations back to the image space;

ii) a real-world application of structured deep gene-

rative models of images, disentangling pose from ap-

pearance in the analysis of the human body;

iii) a thorough quantitative and qualitative evalua-

tion of the capabilities of our models; and

iv) a demonstration of its principal utilities by per-

forming semi-supervised pose estimation, pose-transfer

and pose manipulation.

2 Related Work

2.1 Analysing Humans in Images: Overview

The analysis of people in visual data has been actively

investigated as a computer vision and machine learning

topic lately [4,14,30,31,74,75,90,96,99]. Historically,

the process of synthesising virtual humans [33,59,60] is

a computer graphics undertake since its origins in the

’60s, with Boeing’s “first man” [9,23]. Therefore, the

geometric and photometric intricacies in the formation

of digital images depicting people are well-known in

computer graphics, as demonstrated by the existence of

many commercial and academic specialised engines [1,

61,63,65,70,94]. Nonetheless, the unconstrained cre-

ation of truly realistic RGB images is still reasonably

dependent upon manual intervention [34]. Moreover,

to produce accurate images of people is harder since

humans seem to be very familiarised to corporal traits

(e.g. faces) even since their early ages [58,95].

Over time, the generation of humans in images

was also embraced by the computer vision community.

Aiming for less manual intervention, image-based

techniques were successfully adopted on matters like

rendering and modelling [8,11,20,42,87]. For instance,

a large body of work has relied on geometric 3D

models for generating synthetic images of faces [35,

69], bodies [10,88], and hands [16,76,78]. Despite

that, to automatically synthesise artificial images

indistinguishable from real ones may be considered

as equivalent to succeed in a visual Turing test [81].

Hence, a substantially complicated and consequently

yet unsolved challenge [21].

Another line of approaches, following the machine

learning methodologies closely, had modelled the im-

age formation by designing and learning probabilistic

generative models [18,24,25,26,52,100,106]. However,

it is highly complex and constrained due to intractable

probability distributions and the high variability of la-

tent factors. Often, simplifying assumptions are made

in practice, such as independence between different fac-

tors of variation, leading to weak generative models that

fail to capture statistical subtleties.

Recently, the advent of the deep generative models

(DGMs) [29,47,72] somehow gathers the three lines of

methods mentioned above. Bringing together charac-

teristics from computer graphics, computer vision, and

machine learning makes the DGMs a powerful analysis-

by-synthesis framework. We discuss the DGM-based

approaches related to our work in the following section.



4 Rodrigo de Bem et al.

2.2 Analysing Humans in Images with DGMs

Generally, in classical DGMs, such as standard VAEs

and GANs, pose representation is non-interpretable

and unsupervised, entangled with the visual appear-

ance in the latent space. This is similarly employed

by some image-to-image translation networks, how-

ever, in contrast to the relatively low-dimensional

manifolds learned by the DGMs, in the latter case

high-dimensional abstractions are learned and used

strictly for direct mapping from and to the image space.

On the other hand, conditional DGMs usually define

part of the abstract data representation, i.e. body pose,

to be an interpretable and observable random variable,

while the rest of the representation (visual appearance)

is kept non-interpretable and latent, still subjected to

unsupervised learning. Finally, in structured DGMs

approaches, as the Semi-DGPose, the latent space

can be simultaneously composed by interpretable and

non-interpretable random variables. In the former case,

the variables may be fully or semi-supervised, while in

the latter group they are still maintained unsupervised.

Below, we describe related literature gathering the

methods according to their adopted type of approach.

Image-to-image networks. Ma et al. [56] introduce

the Pose Guided Person Generation Network (PG2),

a two stage image-to-image translation model which

is trained on pairs of images of the same person in

different poses, scales and points of view. The authors

admit the difficulty of generating poses and detailed

appearance simultaneously in an end-to-end fashion.

Their model, which is conditioned on images rather

than poses, does not allow sampling, thus in its essence,

it is not a generative model, which is again in contrast

to our single-stage approaches. In a second proposal,

Ma et al. [57] present a GAN-based model for learning

image embeddings of foreground, background and

pose variables encoded as interpretable variables. The

method is still limited to training and testing with

cross-pose/scale pairs for pose-transfer, however, it

allows sampling, differently from the PG2. In contrast

to our Semi-DGPose model, it is not capable of

performing either pose estimation or semi-supervised

learning, relying on off-the-shelf pose estimators to

perform pose-transfer.

Recently, Esser et al. [19] present a conditional

image-to-image translation network based on the

U-Net [77]. The model is conditioned on an appearance

encoding obtained using a VAE architecture. It is

more versatile than [56,57], although still not capable

of producing either an interpretable encoding of

pose (pose estimation) or performing semi-supervised

learning. Similarly, Balakrishnan et al. [4] also propose

a U-Net-based approach. In this case, the authors

make use of three U-Nets which tackle foreground

segmentation and synthesis, as well as background

synthesis. The model is trained with video sequences of

the same person performing a limited set of activities.

Therefore, it is limited to translating images of the

same person to different poses. Other very recent

approaches [14,67] have to be explicitly trained for

pose-transfer, i.e. using images pairs, and do not have

the capability of predicting pose. This is in sharp

contrast to our Semi-DGPose approach, in which we

learn pose estimation, while pose-transfer is achieved

as a by-product. In the method by Trumble et al. [92],

pose is estimated from multiple views, although it does

not allow semi-supervised learning.

Rhodin et al. [73] learn 3D pose estimation from

multi-view images of the same person acquired from

synchronised and calibrated cameras. In contrast to

our approach, their method explicitly uses the rotation

matrix between cameras during training for the unsu-

pervised learning of a geometry-aware latent represen-

tation. From such representation, the 3D pose is esti-

mated posteriorly with a shallow network. The authors

do not define their method as a generative model, but

as a 3D pose estimator, although it can perform novel

viewpoint synthesis. Another work by Zanfir et al. [107]

focus uniquely on the specific task of appearance trans-

fer, also based on 3D pose. In contrast, our closely re-

lated task of pose-transfer is just one among all the

tasks our DGMs can perform (e.g. sampling, pose es-

timation, direct manipulation) employing only 2D pose

representations. Lastly, Zhang et al. [108] focus on a

slightly different task. They propose the unsupervised

discovery of 2D landmarks using optical flows from Hu-

man3.6M videos as a short-term self-supervision. Such

landmarks are an intermediate representation of pose

since they do not correspond explicitly to specific body

parts. In contrast, we employ single still images using

directly and explicitly interpretable pose representa-

tions.

Finally, it is essential to differentiate such image-to-

image translation methods from our DGMs. The former

depends upon input images at test time, while the lat-

ter effectively allow sampling from the latent structured

representations learned during training. This subtle dif-

ference means that such structured representations are

responsible for learning the underlying factors of varia-

tions in image generation, without relying on informa-

tion from input images for generating outputs at test

time.
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Classical DGMs. Lassner et al. [51] have proposed

the ClothNet-full model, in which a VAE model is

used to learn a latent representation of segmentation

masks of people in given poses. The reconstructed

masks are mapped back to the image space by an

image-to-image translation module based on [38].

In contrast, we learn our generative models directly

on the raw image data without the need for body

parts segmentation. Moreover, pose is interpretable

in both of our methods. Siarohin et al. [83] propose

a GAN model with skip connection in the generator

and a discriminator conditioned on pose. Similarly

to [56], the model is restricted to pose-transfer on

pairs of images of the same person. The body pose is

always given to the model and non-interpretable in the

learned latent encoding. Apart from this, Walker et

al. [98] proposed a hybrid architecture, associating

a VAE and a GAN for forecasting future poses in a

video. Here, a low-dimensional pose representation is

learned using a VAE, and once the future poses are

predicted, they are mapped to images using a GAN

generator. Considering GAN based generative models,

Tulyakov et al. [93] present a GAN network that learns

motion and content in two separate latent spaces in

an unsupervised manner. However, it does not allow

explicit manipulation over the human pose.

Conditional DGMs. Lassner et al. [51] present a

second model, the ClothNet-Body, which is a CVAE

conditioned on human pose. This model is closely

related to our Conditional-DGPose, but it also uses

low-dimensional segmentation masks and an auxiliary

image-to-image transfer network, based on [38], to

generate realistic images. Pumarola et al. [71] propose

an unsupervised image synthesis based on a conditional

GAN method, yet it is also not capable of performing

pose prediction.

In summary, there are methods in the literature

closely related to our Conditional-DGPose, mainly due

to its conditional nature. Although, to our knowledge,

no other method gathers the capabilities of our Semi-

DGPose as a structured DGM. The novelty in the Semi-

DGPose largely relies on how the body pose is handled,

differing it from related work. Moreover, the capacity

for performing pose estimation, indirect pose-transfer,

and semi-supervised learning, while aiming for joint un-

derstanding and generation of people in images is pe-

culiar to our model. Following Larsen et al. [50], we use

a discriminator in our training to improve the quality

of the generated images. However, in contrast to [50],

the latent space of our approach is interpretable, which

enables us to sample different poses and appearances.

3 Preliminaries

Deep generative models (DGMs) come in two broad

flavours – Variational Autoencoders (VAEs) [47,72],

and Generative Adversarial Networks (GANs) [29].

In both cases, the goal is to learn a generative

model pθ(x, z) over data x and latent variables z, with

parameters θ. Typically the model parameters θ are

represented in the form of a neural network.

VAEs express an objective to learn the parameters θ

that maximise the marginal likelihood (or evidence) of

the model denoted as pθ(x) =
∫
pθ(x|z)pθ(z)dz. They

introduce a conditional probability density qφ(z|x)

as an approximation to the unknown and intractable

model posterior pθ(z|x), employing the variational

principle in order to optimise a surrogate objec-

tive L(φ, θ;x), called the evidence lower bound

(ELBO), as

log pθ(x) ≥ LVAE(φ, θ;x)

= Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
. (1)

The conditional density qφ(z|x) is called the recog-

nition or inference distribution, with parameters φ also

represented in the form of a neural network. Lastly,

VAEs also admit an extension to conditional genera-

tive models (CVAEs) [86], simply by incorporating a

conditioning variable y, to derive

log pθ(x|y) ≥ LCVAE(φ, θ;x|y)

= Eqφ(z|x,y)
[
log

pθ(x, z|y)

qφ(z|x,y)

]
. (2)

On the other hand, in the context of structured

semi-supervised learning, one can factor the latent vari-

ables into unstructured or non-interpretable variables z

and structured or interpretable variables y without loss

of generality [46,84]. For learning in this framework,

the objective can be expressed as the combination

of supervised and unsupervised objectives. Let Du
and Ds denote the unlabelled and labelled subset of

the dataset D, and let the joint recognition network

factorise as qφ(y, z|x) = qφ(y|x)qφ(z|x,y). Then, the

combined objective summed over the entire dataset

corresponds to

LSS(θ, φ;D) =
∑

xu∈Du

Lu(θ, φ;xu)

+ γ
∑

(xs,ys)∈Ds

Ls(θ, φ;xs,ys) (3)
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where Lu and Ls are defined as

Lu(θ, φ;xu) = LVAE(θ, φ;xu), and (4)

Ls(θ, φ;xs,ys) = Eqφ(z|xs,ys)
[
log

pθ(xs, z|ys)
qφ(z|xs,ys)

]
+ α log qφ(ys|xs), (5)

respectively. Here, the hyper-parameter γ (Eq. 3) con-

trols the relative weight between the supervised and

unsupervised dataset sizes, and α (Eq. 5) controls the

relative weight between generative and discriminative

learning.

Note that by the factorisation of the generative

model, VAEs necessitate the specification of an explicit

likelihood function pθ(x|z), which can often be difficult.

GANs, on the other hand, attempt to sidestep this

requirement by learning a surrogate to the likelihood

function, while avoiding the learning of a recogni-

tion distribution. Here, the generative model pθ(x, z),

viewed as a mapping G : z 7→ x, is setup in a two-player

minimax game with a “discriminator” D : x 7→ {0, 1},
whose goal is to correctly identify if a data point x

came from the generative model pθ(x, z) or the true

data distribution p(x). Such objective is defined as

LGAN(D,G) = Ep(x) [logD(x)]

+ Epθ(z) [1− logD(G(z))] . (6)

In fact, in our structured model, generation is defined as

a function of pose and appearance as G(y, z). Crucially,

learning a customised approximation to the likelihood

can result in a much higher quality of generated data,

particularly for the visual domain [43].

A more recent family of DGMs, VAEGANs [50],

bring together these two different approaches into a sin-

gle objective that combines both the VAE and GAN

objectives directly as

L = LVAE + LGAN. (7)

This marries better the likelihood learning with the

inference-distribution learning, providing a more flex-

ible family of models.

4 Our Approach

As set out in the preliminaries (Sec. 3), we use the VAE-

GAN framework as the basis for our generative mod-

els [50]. Note that, in incorporating semi-supervised

learning, the semi-supervised VAEGAN includes two

distinct tasks. First, it involves learning a recognition

network that can estimate pose y and appearance z for

any given RGB image x. Second, it involves learning

a generative network that combines a given pose with

an appearance to generate visual data (RGB image)

corresponding to those variables.

From discriminative modelling, we know that the

first task, i.e. predicting pose, is eminently plausible up

to learning an appearance model. However, learning the

full generative model is something that can be fraught

with difficulties. For one, pose and appearance can ex-

hibit a large degree of information imbalance – pose can

be distilled into a set of (x, y) coordinates, whereas ap-

pearance can encode a vast swathe of information (e.g.

texture, colour, shapes) about the given input.

Given a generative model that takes both ap-

pearance z and pose y as inputs to produce an

RGB image x, a reasonable first step can be just to

evaluate the performance of a conditional generative

model, where the conditioning variable is taken to be

the interpretable pose y. We refer to this setup as

Conditional-DGPose, with reference to the fact that

it is a conditional-VAEGAN model. Its lower bound

is given by Eq. 2, and its final objective function is

defined as

L = LCVAE + LGAN, (8)

in contrast to the standard VAEGAN objective (Eq. 7).

Here, all data is “labelled” with pose, but the goals

were: i) primarily, to verify qualitatively if a low-dimen-

sional conditioning variable would affect the conditional

generative model; ii) secondly, to evaluate the accuracy

of the reconstructed images quantitatively w.r.t. the hu-

man body poses and the image quality.

Once verified through experiments that the condi-

tional approach works, we could then proceed towards

our structured semi-supervised VAEGAN, referred to
as Semi-DGPose, as its main difference from the previ-

ous setup is that the encoding distribution is no longer

conditioned on the pose, but instead predicts it as per

Eq. 3–6. In contrast to the standard VAEGAN objec-

tive (Eq. 7), the structured semi-supervised VAEGAN

final objective function is given by,

L = LSS + LGAN. (9)

We describe the details and implementations of our

models in the rest of this section. Next, we start defin-

ing the adopted pose representations, which are com-

mon for both, the Conditional-DGPose and the Semi-

DGPose architectures.

4.1 Pose Representation

In our DGMs, the random variable y corresponds to an

abstraction of the human body pose. Therefore a suit-

able concrete representation must be adopted in the
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implementation of the models. As mentioned in our

literature review, many methods which define a gen-

erative model in the pose space would simply encode

J joints defining the body as a vector yv, such that

yv ∈ R2J . Others employ extended versions of it, in

which positions of R rigid parts and B whole body

are derived from the annotated joints [105], such that

yv ∈ R2(J+R+B). Both cases are illustrated in Fig. 2.

(a) (b)

Fig. 2 Vector representation. (a) J = 14 joints which
compose a 2D pose vector yv ∈ R2J . (b) An extended 2D
vector composed by 24 body parts (J = 14 annotated joints,
R = 9 intermediate points between joints and B = 1 central
point), such that yv ∈ R2(J+R+B).

On the other hand, the mapping of 2D joints po-

sitions to heatmaps has shown to be very effective in

several pose estimation approaches [15,68,91,103]. The

Gaussian heatmaps represent the underlying probabil-

ity distribution of body parts’ locations. In our method,

the heatmap representation yh consists of P body ele-

ments, in a way that yh ∈ RP×H×W , where H and W

are the heatmap height and width, respectively. In the

simplest case P = J , however, as the set of joints is rea-

sonably sparse, to cover the entire area of the bodies,

joints, rigid parts and the whole body might be used

as an extended case, in which P = J + R + B [5],

as illustrated in Fig. 3. In this way, each body ele-

ment p is represented using a 2D Gaussian around its

centre µp = (ip, jp), with diagonal covariance matrix

Σp = Rp

[
σ2
p,i 0

0 σ2
p,j

]
R>p , computed as follows:

Joints. Since joints have a limited spatial extent, we

follow previous approaches [15,68,91,103] in modelling

them as isotropic Gaussians that are centred at the

ground-truth joint location and have a small standard

deviation (e.g. σp,i = σp,j = 1.5 pixel for a 64 × 64

heatmap).

Rigid Parts. The centre µp of a rigid part p is defined

as the mean point of the centres µk and µl of the joints

it connects. We orient the Gaussian representing the

rigid part to align its i axis with the line connecting µk
and µl. We define σp,i to be proportional to |µk − µl|,
and set σp,j = κpσp,i, where κp is a part-specific ratio,

inspired by anthropometric measurements [66].

Body. The body centre is defined to be the mean of the

annotated joint centres. Principal component analysis

(PCA) of the joint centres is used to obtain the orienta-

tion of the body in the image plane. We define σp,i and

σp,j to be proportional to the distance between the ex-

treme projections of the joint centres onto, respectively,

the principal and secondary axes of variation.

(a) (b) (c)

Fig. 3 Heatmap representation. Heatmaps superim-
posed corresponding to (a) J = 14 annotated joints, (b)
R = 9 rigid parts, and (c) B = 1 whole body; such that
yh ∈ RP×H×W . Right, left and central body parts are de-
noted by the colours green, blue and red, respectively, in the
person-centric representation.

In our both models, as detailed in the next sec-

tions, we make use of both forms of pose representation,

taking advantage of their particular characteristics in

each case. In the Conditional-DGPose, only the heat-

map representation yh is employed, since, as shown later

in our experiments, it can be seamlessly concatenated

to feature maps, helping on the generation of accurate

output images. On the other hand, in the Semi-DGPose

model, we additionally employ the vector-based form

yv, as a way of maintaining a low-dimensional latent

representation of pose.

4.2 DGPose Architectures

We have tested several variations of deep CNN archi-

tectures for implementing our models, culminating in

our best performing ones, which are described here.

All its modules are deep CNNs, and full implemen-

tation definitions are given in the appendix (Sec. A)

and referred adequately in the text. Due to the gener-

ality of generative models, the architectures may be em-

ployed in different ways according to the aimed tasks.

Thus, we describe separately training and test phases,

dividing the latter into reconstruction, pose-transfer,

sampling and pose-estimation, for both models. Thus,

the Conditional-DGPose and the Semi-DGPose are de-

scribed following.

4.2.1 Conditional-DGPose

Our conditional-VAEGAN model learns the parameters

of four deep CNN networks simultaneously: i) a recog-
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Fig. 4 Conditional-DGPose architecture. At the training, the Encoder receives x⊕ yh as input and learns the posterior
qφ(z|x,yh). The Prior module receives yh alone and learns the distribution pθ(z|yh). Appearance is sampled z ∼ qφ(z|x,yh),
using the reparametrization trick [47], and passed to the Decoder, as well as the conditioning pose yh, which is concatenated to
the Decoder feature maps. The Decoder then generates a reconstructed image G(yh, z). The loss function (see Eq. 8, Sec. 4) is
composed by the following terms, highlighted in red: the L1-norm L1(x, G(yh, z)) which is computed between the original and
the reconstructed image; the KL-divergence KL[qφ(z|x,yh)||pθ(z|yh)], which is used to regularise the posterior distribution;
and the GAN Discriminator cross-entropy loss used to learn how to discern between real and generated images.

nition network (Encoder), which estimates appearance

z conditioned to pose yh and to a given RGB image

x; ii) a Prior network, which estimates appearance z

conditioned to pose yh alone; iii) a generative network

(Decoder), which combines appearance z and the con-

ditioning pose yh, to generate corresponding RGB im-

ages G(yh, z); and iv) a Discriminator network, which

differentiates between real images x and generated im-

ages G(yh, z). Learning is pursued by the minimisation

of the loss function L = LCVAE +LGAN (Eq. 8, Sec. 4),

composed by the CVAE evidence lower bound (ELBO)

LCVAE and by the GAN cross-entropy discriminator

loss LGAN. An overview of our model is shown in Fig. 4

and implementation details are provided in Tab. A2

(appendix). Below, we describe further the training and

the test phases, dividing the latter into reconstruction,

pose-transfer and sampling.

Training. Given an image x, the corresponding

heatmap labels (conditioning pose) are concatenated

to it as per x ⊕ yh (Encoder, Layer 1, Tab. A2).

Then, the Encoder estimates the conditional posterior

distribution qφ(z|x,yh). The heatmap labels yh alone

are the input of the Prior module, which estimates the

distribution pθ(z|yh). Appearance is sampled from the

posterior z ∼ qφ(z|x,yh), using the reparametrisation

trick [47]. The sample z, along with the conditioning

pose yh (Decoder, Layer 7, Tab. A2), are passed

through the Decoder which generates a reconstructed

image G(yh, z). This reconstructed image, along with

the real image x, are still used as inputs for the

Discriminator module, which learns how to discern

between them. Finally, the overall loss function min-

imised during training is composed of the L1-norm

reconstruction loss L1(x, G(yh, z)); the KL-divergence,

which acts as a regulariser, between the posterior and

the prior distributions, KL[qφ(z|x,yh)|pθ(z|yh)]; and

the cross-entropy Discriminator loss (Eq. 6, Sec. 3).

Reconstruction and Direct Pose-transfer. At test

time, when an image x1 and its corresponding pose yh1

are given as input, the reconstructed image G(yh1
, z

1
)

is obtained as the Decoder output. However, if x
1

is

used as input along with a different pose yh2 , the per-
son in the reconstructed image G(yh2

, z
1
) will keep the

appearance of x
1
, with the body pose defined by yh2

,

as illustrated in Fig. 5. Similarly, as shown later in our

experiments, the same procedure may be adopted to

directly manipulate the reconstructed image, such as

changing body size and aspect ratio, moving or sup-

pressing body parts or even hallucinating multiple peo-

ple.

Encoder Decoder

Fig. 5 Conditional-DGPose direct pose-transfer and manip-
ulation at test time.

Sampling. At test time, sampling is obtained when

no RGB image is given as input. In this case, as illus-

trated in Fig. 6, only a conditioning pose yh is given as
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the input of the Prior module, which defines pθ(z|yh).

From this Prior distribution, the sampled appearance z

and the conditioning pose yh are passed to the Decoder

network. In this manner, for a given pose, different ap-

pearances can be randomly created from the learned

generative model.

Prior Decoder

Fig. 6 Conditional-DGPose sampling at test time.

4.2.2 Semi-DGPose

Differently from the Conditional-DGPose, our struc-

tured semi-supervised VAEGAN model (Fig. 7) learns

the parameters of three deep CNN networks simul-

taneously: i) a recognition network (Encoder), which

estimates appearance z and pose yv from a given

RGB image x; ii) a generative network (Decoder),

which combines appearance z and pose yv, to gen-

erate corresponding RGB images G(yv, z); and iii) a

Discriminator network, which differentiates between

real images x and generated images G(yv, z). Learning

is pursued by the minimisation of the loss function

L = LSS + LGAN (Eq. 9, Sec. 4), composed by the

structured semi-supervised VAE evidence lower bound

(ELBO) LSS and by the GAN cross-entropy discrim-

inator loss LGAN. A fourth module, called Mapper,

is introduced by us to overcome a peculiarity caused

by the inclusion of pose in the latent space. Such a

module, trained separately, is described next.

The Mapper Module. Our preliminary experiments

with the Conditional-DGPose showed that heatmaps

led to better quality reconstructions, in contrast to

the vector-based representation. On the other hand,

a low-dimensional representation is more suitable and

desirable as a latent variable, since human pose lies

in a low-dimensional manifold embedded in the high-

dimensional image space [17,28]. To cope with this

mismatch, we introduce the Mapper module, which

maps pose-vectors yv to heatmaps yh. Ground-truth

heatmaps are constructed from manually annotated

2D joints labels, using a simple weak annotation

strategy [5]. The Mapper module is then trained to

map 2D joints to heatmaps, minimising the L2-norm

between predicted and ground-truth heatmaps. This

module is trained separately with the same training

hyper-parameters used for our full architecture, de-

scribed later in Sec. 5.5. In the training of the full

Semi-DGPose architecture, the Mapper module is

integrated to it with its weights kept fixed, since the

mapping function has been learned already. The Map-

per allows us to keep a low-dimensional representation

yv in the latent space, at the same time that a dense

high-dimensional “spatial” heatmap representation yh
facilitates the generation of accurate images by the

Decoder. As it is fully differentiable, the module allows

the gradients to be backpropagated normally from the

Decoder to the Encoder, when it is required during the

training of the full architecture.

In the rest of this section, we describe further the

training and the test phases, dividing the latter into re-

construction, indirect pose-transfer, sampling and pose

estimation. An overview of our model is shown in Fig. 7

and implementation details are provided in Tab. A3

(appendix).

Training. The terms of Eq. 3 (Sec. 3) correspond to

two training routines which are alternately employed,

according to the presence or absence of ground-truth

labels.

In the unsupervised case, when no label is available,

it is similar to the standard VAE (see Eq. 4, Sec. 3).

Accurately, given the image x, the Encoder estimates

the posterior distribution qφ(yv, z|x), where both ap-

pearance z and pose yv are assumed to be independent

given the image x. Then, pose yv and appearance z are

sampled from the posterior, using the reparametriza-

tion trick [47], and passed to the Decoder to generate

a reconstructed image. Finally, the unsupervised loss

function minimised during training is composed of the

L1-norm reconstruction loss L1(x, G(yv, z)); the KL-

divergences, which act as regularisers, between the pos-

terior and the prior distributions, KL[qφ(yv|x)|p(yv)]
and KL[qφ(z|x)|p(z)]; and the cross-entropy Discrim-

inator loss (Eq. 6, Sec. 3).

In the supervised case, when the pose label is avail-

able, the KL-divergence between the posterior pose dis-

tribution and the pose prior, KL[qφ(yv|x)|p(yv)], is re-

placed with a regression loss between the estimated

pose and the given label (see Eq. 5, Sec. 3). Now, only

the appearance z is sampled from the posterior distribu-

tion and passed to the Decoder, along with the ground-

truth pose label. Finally, the supervised loss function

minimised during training is composed of the L1-norm

reconstruction loss, the KL-divergence over the appear-

ance distribution, the regression loss over the pose vec-

tor, and the cross-entropy Discriminator loss. In this

case, gradients are not backpropagated from the De-

coder to the Encoder, through the pose posterior dis-

tribution, since pose was not estimated.
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Fig. 7 Semi-DGPose architecture. At the training, the Encoder receives x as input and learns the posterior distribution
qφ(yv, z|x). In the unsupervised routine, samples of appearance z and pose yv are obtained using the reparametrisation
trick [47]. These samples are passed to the Decoder, which generates a reconstructed image G(yv, z). The unsupervised loss
function is composed by the following terms, highlighted in red: the L1-norm L1(x, G(yv, z)) between the original and the
reconstructed images; the KL-divergence losses between the posterior distribution qφ(yv, z|x) and the weak priors p(yv) and
p(z), which work as regularisers (see Eq. 4, Sec. 3); and the cross-entropy Discriminator loss (Eq. 6, Sec. 3). In the supervised
routine (not shown above for simplicity), the only difference is that a regression loss between the estimated pose and the pose
ground-truth label substitutes the KL-divergence over the pose posterior distribution (see Eq. 5, Sec. 3). In both, supervised
and unsupervised training routines, the low-dimensional pose vector yv is mapped to a heatmap representation yh by the
Mapper module and concatenated to the Decoder. Eq. 3 (Sec. 3) shows the overall loss function.

In both unsupervised and supervised cases, the Map-

per module, which is trained offline, is used to map the

pose-vector yv in the latent space to a dense heatmap

representation yh, as illustrated in Fig. 7.

Reconstruction. At test time, only an image x is

given as input, and the reconstructed image G(yv, z) is

obtained from the Decoder, as illustrated in Fig. 8. In

the reconstruction process, direct manipulation of the

pose representation yv allows image generations with
varying body poses and sizes while the appearance is

kept the same.

DecoderEncoder

Fig. 8 Semi-DGPose reconstruction at test time.

Indirect Pose-transfer. Our method allows us to do

indirect pose-transfer without specific training for such

a task. As illustrated in Fig. 9, an image x1 is first

passed through the Encoder network, from which the

target pose yv1 is estimated and kept. In the second

step, another image x
2

is propagated through the En-

coder, from which the appearance encoding z2 is kept.

Finally, z
2

and yv1 are jointly propagated through the

Decoder, and an image x
3

is reconstructed, containing

a person in the pose yv1 estimated from the first im-

age, but with the appearance z
2

defined by the second

image. This is a novel application that our approach en-

ables. In contrast to the prior art, our network neither

relies on any external pose estimator nor on condition-

ing labels to perform pose-transfer.

Encoder

STEP 1: Pose Estimation

Encoder

STEP 2: Appearance

Decoder

STEP 3: Pose-transfer

Fig. 9 Semi-DGPose indirect pose-transfer at test time.

Sampling. When no image is given as input, we can

jointly or separately sample pose yv and appearance z

from the posterior distribution. They may be sampled

at the same time, or one may be kept fixed while the

other distribution is sampled. In all cases, the encodings

are passed through the Decoder network to generate a

corresponding RGB image, as illustrated in Fig. 10.

Decoder

Fig. 10 Semi-DGPose sampling at test time.
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Pose Estimation. One of the main differences be-

tween our approach and the prior art is the ability of

our model to estimate human-body pose as well. In this

case, as illustrated in Fig. 11, given an input image x, it

is possible to perform pose estimation by regressing to

the pose representation vector yv. Thus, the appearance

encoding z is disregarded, and the Decoder, Mapper,

and Discriminator networks are not used.

Encoder

Fig. 11 Semi-DGPose pose estimation at test time.

5 Experiments and Results

We have performed a large number of experiments to

evaluate our models. In this section, we present the

datasets, metrics, and training hyper-parameters used

in our work. Finally, quantitative and qualitative results

show the effectiveness and novelty of our Conditional-

DGPose and Semi-DGPose architectures.

5.1 Human3.6M Dataset

Human3.6M [37] is a widely used benchmark for human

body analysis. It contains 3.6 million images acquired

by recording 5 female and 6 male actors performing a

diverse set of motions and poses corresponding to 15 ac-
tivities, under 4 different viewpoints. We followed the

standard protocol and used sequences of 2 out of 11

actors as our test set, while the rest of the data was

used for training. We use a subset of 14 (out of 32)

body joints represented by their (x, y) 2D image co-

ordinates as our ground-truth data, neglecting minor

body parts (e.g. fingers). Due to the high frequency of

video acquisition (50Hz), there is a considerable level

of practically redundant images. Thus, out of images

from all 4 cameras, we subsample frames in time, pro-

ducing subsets for training and testing, with 317, 989

and 1, 280 images, respectively. All the original images

have a resolution of 1000× 1000 pixels.

5.2 ChictopiaPlus Dataset

ChictopiaPlus [51] is an extension of the Chictopia

dataset [53]. It augments the original per-pixel anno-

tations for body parts with pose annotation [36], 3D

shape [55], and facial segmentation. In contrast to the

Human3.6M dataset, in which each actor always wears

the same outfit, it contains 23, 011 training, 2, 913

validation, and 2, 873 testing images of segmented

people (without background) dressed in a great variety

of clothes. All the images have an original resolution of

286× 286 pixels.

5.3 DeepFashion Dataset

The DeepFashion dataset (In-shop Clothes Retrieval

Benchmark) [54] consists of 52,712 images of people

in a variety of clothing and poses. We follow Ma et

al. [56], using their joints’ annotations obtained with an

off-the-shelf pose estimator [13], and divide the dataset

into training (44,950 images) and testing (6,560 im-

ages) subsets. Images with wrong pose estimations were

suppressed and all original images have 256× 256 pix-

els. Importantly, we aim to learn a complete generative

model of people in images, which is significantly more

complex, compared to models focusing on a particu-

lar task, such as pose-transfer. For this reason, we use

images individually in our training set, instead of em-

ploying pairs of images of the same person as in [56,

83].

5.4 Metrics

Quantitative evaluation of generative models is inher-

ently difficult [89]. Since our models explicitly repre-

sent appearance and body pose as separate variables,

we evaluate their performance w.r.t. three different as-

pects. i) Image quality of reconstructions is evaluated

using the standard Peak Signal-to-Noise Ratio (PSNR)

and Structural Similarity Index (SSIM) metrics [101].

ii) Accuracy of the reconstructed poses is evalu-

ated using a protocol introduced by us as follow. To

set a common ground for comparing an original test

set, with a reconstructed one, we start using a well-

established (discriminative) human pose estimator [68],

and initially estimating all 2D poses in the original test

set. In our protocol, we assume that such estimations

are the ground-truth poses of the test set. Subsequently,

we apply the same discriminative estimator over the re-

constructed test images, produced by the trained gener-

ative models. Finally, we use of the Percentage of Cor-

rect Keypoints (PCK) metric [105], which computes the

percentage of 2D joints correctly located by a pose es-

timator, given the ground-truth and a normalised dis-

tance threshold corresponding to the size of the per-

son’s torso. Thus, we assume that any degradation in
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the PCK metric is caused by imperfections on the re-

constructed images, since a PCK score of 100% would

correspond to having all the estimated joints, in the

original and the reconstructed images, at the same lo-

cations, up to the distance threshold. We illustrate this

metric in Fig. 12. iii) Accuracy of pose estimation,

obtained by the Semi-DGPose model, is measured us-

ing the PCK metric with real 2D annotated labels as

ground-truths.

ORIGINAL RECONST. ORIGINAL RECONST.

(a) (b)

Fig. 12 Accuracy of the reconstructed poses. Samples
illustrating best and worst pose reconstructions on the Hu-
man3.6M dataset. Each pair of images shows the pose esti-
mation over the original image (left) and the reconstructed
image (right). Lines connect the estimated joints for visuali-
sation purposes. Right limbs, left limbs, and head are shown,
respectively, by green, red and blue lines. (a) It illustrates the
best reconstructed poses, with PCK@0.5 = 1.00. (b) It illus-
trates the worst reconstructed poses, with PCK@0.5 = 0.00.
All images are 64× 64 pixels.

5.5 Training

All models were trained with mini-batches consisting of

64 images. We used the Adam optimiser [45] with an

initial learning rate set to 10−4. The weight decay reg-

ulariser was set to 5× 10−4. Network weights were ini-

tialised randomly for fully-connected layers and with ro-
bust initialisation [32] for convolutional and transposed-

convolutional layers. Except when stated differently, for

all images and all models, we used a 64×64 pixels crop,

centring the person of interest. We did not use any form

of data augmentation or preprocessing except for image

normalisation to zero mean and unit variance. All mod-

els were implemented in Caffe [40], and all experiments

ran on an NVIDIA Titan X GPU.

5.6 Conditional-DGPose

As mentioned earlier (Sec. 4), the Conditional-DGPose

is taken by us as an intermediate step in the inves-

tigation towards our Semi-DGPose model. To better

evaluate and understand its capabilities, we start our

experiments by validating it qualitatively with the

Human3.6M benchmark, since this dataset is composed

of images in a controlled environment. Initially, in

Sec. 5.6.1, we evaluate different pose representations,

with the best performance presented by the heatmap

representation. In Sec. 5.6.2, we show the effectiveness

of the Conditional-DPGose architecture, illustrating

reconstruction and sampling tasks. Besides that, we

particularly stress the effects of pose manipulation, by

performing pose-transfer and hallucinating multiple

people in a variety of unseen or even unrealistic

poses, still on the Human3.6M dataset. After that,

we present qualitative and quantitative results on the

ChictopiaPlus dataset [51]. The Conditional-DGPose

outperforms the closest related comparable baseline,

the ClothNetBody [51], achieving state-of-the-art

results on the ChictopiaPlus. Finally, qualitative

and quantitative experiments on the DeepFashion

dataset [54] are shown. On this dataset, our baseline

is the image-to-image translation architecture by Ma

et al. [56], which is trained on pairs of images showing

the same person in different poses. Although our

Conditional-DGPose method tackles a significantly

more complex problem, i.e. learning a generative model

and its latent representation in the high-dimensional

image space, instead of mapping one image to another,

it presents reasonable results in comparison with the

ones from [56].

5.6.1 Pose Representation

We perform experiments with the two pose represen-

tations mentioned in Sec. 4.1 and with their respec-

tive extensions. We executed end-to-end training with

the Conditional-DGPose architecture, which converged

in approximately 15 epochs. The qualitative evaluation

was performed by the inspection of the reconstructed

images, shown in Fig. 13. As can be observed, the vector

representations, even the extended one, fail to capture

some parts of the body. This problem is particularly

evident concerning the extremities of the limbs. On the

(a) (b) (c) (d)

Fig. 13 Reconstructed images, obtained with each
one of the four representations of human pose eval-
uated: (a) 2D vector, (b) 2D vector extended, (c) heatmaps
and (d) heatmaps extended. We highlight the difficult for cap-
turing the spatial extent of some body parts, particularly ex-
tremities far from the torso, when the vector representations
are adopted. In this example, the use of joints’ heatmaps is
already sufficient to improve the reconstruction. However, the
extended version (with rigid parts and body) turns the model
more robust to more complex poses, since the 14 joints are
fairly sparse.
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other hand, the additional heatmaps for rigid parts and

whole body have shown a positive impact in the recon-

structions. The quantitative measurements, shown in

Tab. 1, support our qualitative evaluation. In all exper-

iments, the heatmaps had the same dimension of the

images (64× 64).

Pose representation L1-Norm
2D vector (14 joints) 14.52
2D vector extended (28 joints) 13.91
Heatmaps (14 joints) 13.55
Heatmaps extended
x (14 joints + 9 rigid parts + 1 whole body) 13.41

Table 1 Average reconstruction errors obtained with the
Conditional-DGPose architecture using L1-norm for our val-
idation set.

5.6.2 Conditional-DGPose Results on Human3.6M

Initially, in Fig. 14, we show our heatmap pose rep-

resentation along with reconstructions, to demonstrate

that realistic images with accurate poses can be gener-

ated. Furthermore, we illustrate sampling in Fig. 15, in

which the separation between pose and appearance is

made evident by the independent change of each vari-

able.

JOINTS RIGID BODY ORIGINAL RECONST.

Fig. 14 Reconstructions on Human3.6M. From the
left to right columns we have: joints, rigid parts and body
heatmaps; original image and finally, the reconstructed im-
age. In the heatmaps, right parts are shown in green, left
parts in red and central parts in blue. Human3.6M images
are 64× 64 pixels.

Next, we stress the pose-transfer and composition-

ality capabilities of the model, pushing it beyond what

is usually done in related methods. Regarding pose-

transfer, we demonstrate the capability of our model

to learn pose and appearance as separate variables

which allows direct control over the two at test time.

To this end, we generate images in which we maintain

the appearance of the input image, yet the generated

person is “moved” into the required target pose. The

target pose may be composed manually, extracted from

another image with an off-the-shelf pose estimator or

Fig. 15 Sampling on Human3.6M. Results obtained by
randomly changing pose and appearance independently.

provided interactively by a user. This is illustrated

in Fig. 16, in which we employ target poses from the

LSP dataset [41], that have completely different poses

in a drastically different environment compared to

our training set. The quality of the generations shows

that our generative model could disentangle pose and

appearance and generate images with poses that do

not exist in the training data.

Concerning manipulation, we show in Fig. 17 how

our model can be used to “compose” images that have

never been seen in the training data. For instance, we

can generate images with multiple people in the same

(replicated) pose simply by conditioning on a respec-

tive heatmap. In fact, we can go one step further and

generate an image where all people are in the same

pose, but one of them is, e.g. shorter and another thin-

ner, as shown in Fig. 18a. In an extreme case, we can

even generate “unreal” images containing only certain

body parts (e.g. heads) or disconnecting them from the

rest of the body, as in Figs. 18b and 18c, respectively.

Note that the training dataset is composed of only sin-

gle person images. Thus the model has never seen an

image with multiple people or only some separate body

parts. This demonstrates that the learned latent space

of our model is indeed disentangled. To the best of our

knowledge, this capability has not been demonstrated

by any other work in the literature.

5.6.3 Conditional-DGPose Results on ChictopiaPlus

We compare our method with Lassner et al. [51], the

closest related work from the literature. We employ

the PSNR and the SSIM metrics to evaluate image

quality, and the PCK metric to provide a quantita-

tive evaluation of pose reconstructions, as described

previously (see Sec. 5.4). In Tab. 2, we initially show

that our method outperforms the ClothNet-body net-
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Fig. 16 Cross-domain pose-transfer on Human3.6M. Here we illustrate the pose-transfer capability of our Conditional-
DGPose. On the leftmost column, we show test images from the LSP dataset [41], along with their corresponding ground-truth
2D pose annotations, composed of 14 joints. These are taken as conditioners (target-poses) on our model for the generation
of the reconstructions, shown from the third to the rightmost column. As can be observed, the target-poses are transferred to
the output images, while the latter maintain their original appearances. We highlight the fact that neither the LSP images nor
their poses were part of the training set.

JOINTS ORIGINAL OUTPUT

Fig. 17 Hallucinating multiple people on Hu-
man3.6M. The Conditional-DGPose model was trained with
images containing only one person. The output images are
generated keeping the appearance of the original images but
conditioned to the manipulated heatmap pose representation
(left). Heatmaps of rigid parts and whole body are not shown
for simplicity.

work [51] regarding both, the PSNR and the SSIM met-

rics. Moreover, our model reports 95.14% of accuracy,

with PCK score at 0.5, and again outperforms [51] by a

large margin, which reports 70.89%. The overall PCK

curve is shown in Fig. 20. Finally, qualitative results

are shown in Fig. 19. Our results demonstrate the good

quality of our reconstructions w.r.t. image quality and

JOINTS OUTPUT JOINTS ORIGINAL OUTPUT

(a) (b)

JOINTS ORIGINAL OUTPUT

(c)

Fig. 18 Generating “unreal” images on Human3.6M.
We illustrate the versatility of the model extrapolating the
generation of images to unseen scenes. (a) Sampled image
in which the pose representation in the centre was manually
translated and scaled, producing two additional bodies: one
shorter and chunkier (left) and one taller and thinner (right).
(b) Reconstructed image in which all the body parts were
suppressed, except the head. (c) Pose-transfer in which the
position of the head was manually changed, disconnecting it
from the rest of the body. Heatmaps of rigid parts and whole
body are not shown for simplicity.

the human pose. The better performance, in compari-

son with [51], can be particularly noticed in the extrem-

ities of body limbs, which we hypothesise as a benefit of

the single stage end-to-end Conditional-DGPose model,



DGPose: Deep Generative Models for Human Body Analysis 15

ORIGINAL OURS ClothNet-Body ORIGINAL OURS ClothNet-Body ORIGINAL OURS ClothNet-Body

Fig. 19 Reconstructions on ChictopiaPlus. In each trio of images we have, respectively: original image (256 × 256),
Conditional-DGPose and ClothNet-body [51] reconstructions. Notice that the images generated by our model are much closer
to the originals in terms of appearance (colours). Moreover, in general, the Conditional-DGPose captures the body parts’
locations more accurately, resulting in better pose reconstructions (see Fig. 20). Best viewed if zoomed in digital version.

in contrast to the multiple stages of training and testing

in [51].

PSNR SSIM
Conditional-DGPose 21.33 0.88
ClothNet-body [51] 16.89 0.82

Table 2 Image Quality on ChictopiaPlus. Quantitative
evaluation w.r.t. image quality, showing that our method out-
performs [51] considering both metrics, the PSNR and the
SSIM.

5.6.4 Conditional-DGPose Results on DeepFashion

Here we show qualitative and quantitative experiments

on the DeepFashion dataset [54]. The baseline on this

dataset is the image-to-image pose guided generation

(PG2) by Ma et al. [56]. Thus, we use their same train-

ing and test sets. However, as our model is not an

image-to-image translation architecture, we do not use

pairs of images for training. Instead, we use individually

44,950 training images and 6,560 test images.

Again, we employ the PSNR and the SSIM met-

rics to evaluate image quality, and the PCK metric to

provide a quantitative evaluation of pose reconstruc-

tions, as described previously (see Sec.5.4). In Table 3,

we initially show that even not being trained on im-

ages pairs and tackling the significantly more complex

task of learning a generative model, instead of executing
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Fig. 20 Accuracy of Poses on ChictopiaPlus. The PCK
scores over reconstructed images of our Conditional-DGPose
(blue) significantly outperforms the ClothNet-body [51] (red).
Detection rate represents the percentage of joints correctly
relocated in the reconstructions.

image-to-image translation, our method achieves scores

only slightly below the ones by the PG2 network on im-

age reconstruction. A similar observation can be done

regarding pose reconstruction, since our model reports

74.94% of accuracy, with PCK score at 0.5, against

78.27% from Ma et al. [56]. The overall PCK curve is

shown in Fig. 23.

Concretely, the learning of a full generative model,

instead of image-to-image translation, allows for the ex-

ecution of tasks, such as sampling from the learned
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Fig. 21 Conditional-DGPose Appearance Manifold. Illustration of the appearance manifold learned on the DeepFashion
dataset. We smoothly traverse the manifold for a given pose, causing changes in the visual appearance of the person in the
image. No image is used as input, only our heatmap pose representation, evidencing that a truly generative model of images
was learned, in which pose and appearance are disentangled. Best viewed if zoomed in digital version.

ORIGINAL OUR PG2 ORIGINAL OUR PG2 ORIGINAL OUR PG2

Fig. 22 Reconstructions on DeepFashion . In each trio of images, we have, respectively: original image, Conditional-
DGPose and PG2 [56] reconstructions. All images have 256 × 256 pixels. Although tackling a more complex task than [56],
our results are still reasonable. Best viewed if zoomed in digital version.

latent space, which are just not feasible with archi-

tectures purely trained on image pairs. To illustrate

this, in Fig. 21 we traverse the appearance manifold

learned on the DeepFashion dataset. Using only our

heatmap pose representation as input, for a given pose,

we smoothly vary the values of the latent appearance

representation, generating samples with different visual

aspect for the same body posture. Such kind of direct

sampling is not feasible with the PG2 [56] architecture.

Finally, the Conditional-DGPose performs 3.06%

and 4.82% worse than the PG2 [56] regarding, re-

spectively, the PSNR and the SSIM metrics (see

Table 3). Despite that, it produces reasonable results

in comparison with the ones from [56]. A qualitative

evaluation is shown in Fig. 22.

PSNR SSIM
Conditional-DGPose 18.38 0.79

PG2 [56] 18.96 0.83

Table 3 Image Quality on DeepFashion. Quantitative
evaluation w.r.t. image quality, showing that our method
presents a performance only slightly below the baseline [56],
considering both metrics, the PSNR and the SSIM, despite
the fact it tackles a significantly more complex task than
image-to-image translation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized distance

0

10

20

30

40

50

60

70

80

90

100

D
e
te

c
ti
o
n
 r

a
te

, 
%

Conditional-DGPose

PG
2

Fig. 23 Accuracy of Poses on DeepFashion. The PCK
scores over reconstructed images of our Conditional-DGPose
(blue) performs only slightly below the PG2 network [56]
(red), despite the fact it is tackling a significantly more com-
plex problem than image-to-image translation. Detection rate
represents the percentage of joints correctly relocated in the
reconstructions.
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5.7 Semi-DGPose

Here, we initially evaluate our Semi-DGPose model

on the Human3.6M [37] dataset. The Human3.6M

is more suitable than both, the ChictopiaPlus and

the DeepFashion, for pose estimation evaluations,

since the former has joints’ annotations obtained by

an accurate motion capture system. While the two

other datasets are augmented with 2D pose labels

obtained using an off-the-shelf pose estimator, conse-

quently resulting in more errors in the ground-truth

annotations. We show quantitative and qualitative

results, focusing particularly on the pose estimation

and the indirect pose-transfer capabilities, described

later in this section. Our experiments and results show

the effectiveness of the Semi-DGPose method on the

Human3.6M.

To show the generality of the model, we present

additional results on the DeepFashion dataset. We

now use our Conditional-DGPose architecture and

the image-to-image translation network PG2 [56] as

baselines, despite to their relevant differences with the

Semi-DGPose. However, to our knowledge, there are

no closer related methods in the literature, i.e. that

simultaneously pursue the understanding and the

generation of people directly in the image space. Since

our Conditional-DGPose method outperforms the

ClothNet-body [51] architecture, we do not carry out

a direct comparison with the latter.

5.7.1 Semi-DGPose Results on Human3.6M

To evaluate the efficacy of our model, we perform a

“relative” comparison. In other words, we first train

our model with full supervision (i.e. all data points are

labelled) to evaluate performance in an ideal case and

then we train the model with other setups, using labels

only for 75%, 50%, and 25% data points. Such an eval-

uation allows us to decouple the efficacy of the model

itself and the semi-supervision to see how the gradual

decrease in the level of supervision affects the final per-

formance of the method on the same validation set.

With full supervision, we first cross-validated the

hyper-parameter α which weights the regression loss

(see Eq. 5, in Sec. 3) and found that α = 100 yields

the best results, as shown in Fig. 24a. Following [84],

we keep γ = 1 in all experiments (see Eq. 3, in

Sec. 3). In Fig. 24b, we show reconstructed images

along with the heatmap pose representation, which

are realistic and comparable with the ones obtained

with the Conditional-DGPose (see Fig. 14). Direct

manipulation, when pose representation is changed

during the reconstruction process while appearance
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Fig. 24 (a) PCK scores for the cross-validation adjustment
of the regression loss weight α. (b) Qualitative reconstructions
with full supervision.

(a) (b) (c) (d) (e)

Fig. 25 Direct manipulation. Original image (a), followed
by reconstructions in which the person’s height was changed
to a percentage of the original, as: (b) 80%, (c) 95%, (d)
105% and (e) 120%. The same procedure may be applied to
produce different changes in the body size and aspect ratio.

is kept the same, is illustrated in Fig. 25. Still with

full supervision, we show the pose estimation accuracy

for different samples in Fig. 26. The Semi-DGPose

achieves 93.85% PCK score, normalised at 0.5, in

the fully-supervised setup (see Fig. 28). This pose

estimation accuracy is on par with the state-of-the-

art pose estimators on unconstrained images [104].

However, since the Human3.6M was captured in a

controlled environment, a standard (discriminative)

pose estimator is expected to perform better.

Subsequently, we evaluate it across different levels

of supervision, with the PSNR and SSIM metrics and

show results in Tab. 4. In Fig. 27, we show reconstructed
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(a) PCK=92.9% (b) PCK=100.0% (c) PCK=96.4% (d) PCK=100.0%

Fig. 26 Pose Estimation on Human3.6M. Pairs of ground-truth and predicted joints superimposed on the original images.
Below each pair, we show the PCK score normalised at 0.5 times the torso size, as usual for the PCK metric. Such normalised
distance explains the high scores despite the existence of minor differences between ground-truth and predicted positions.
Results were obtained with 100% of supervision during training, and each pair correspond to one of the 4 cameras from the
Human3.6M dataset.

(a) (b) (c) (d) (e) (f) (g)

Fig. 27 Reconstructions on Human3.6M. (a) Original image. (b) Heatmap pose representation (rigid parts and body
suppressed in the illustration for simplicity), followed by reconstructions with different levels of supervision: (c) 100%, (d)
75%, (e) 50%, (f) 25%, and (g) Conditional-DGPose.

images obtained with such different levels. It allows us

to observe how image quality is affected when we grad-

ually reduce the availability of labels. Furthermore, we

also evaluate the pose estimation accuracy with semi-

supervision. The overall PCK curves corresponding to

each percentage of supervision in the training set is

shown in Fig. 28. Note that, even with only 25% of

labels available, our model still obtains 88.35% PCK

score, normalised at 0.5, showing the effectiveness of

the semi-supervised approach. Qualitative samples are

shown in Figure 29. Again, aiming to illustrate how the

gradual decrease of supervision in the training set af-

fects the quality of pose estimation on the test images.

Level of supervision PSNR SSIM
100% 22.27 0.89
75% 21.49 0.87
50% 21.36 0.86
25% 20.06 0.83

Table 4 Image Quality on Human3.6M. Quantitative
evaluations of the Semi-DGPose with different levels of su-
pervision using the PSNR and SSIM metrics.

Concerning indirect pose-transfer, as both latent

variables corresponding to pose and appearance can

be inferred by the model’s Encoder (recognition

network) at test time, latent variables extracted from

different images can be combined in a subsequent

step, and employed together as inputs for the Decoder
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Fig. 28 Accuracy of Poses on Human3.6M. Quanti-
tative evaluations of Semi-DGPose for different levels of su-
pervision using the PCK scores. Note that, even with 25%
supervision, our Semi-DGPose obtains 88.35% PCK score,
normalised at 0.5.

(generative network). The result of that is a generated

image combining appearance and body pose, extracted

from two different images. The process is done in

three phases, as illustrated in Fig. 30. Firstly, the

latent pose representation yv1 is estimated from the

first input image through the Encoder. Secondly, the

latent appearance representation z
2

is estimated from

a second image, also through the Encoder. Lastly, yv1
and z2 are propagated through the Decoder, and a

new image is generated, combining body pose and
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(a) (b) (c) (d) (e)

Fig. 29 Qualitative results of semi-supervised pose estimation. Original image (a), followed by predictions, over the
original image, with: (b) 100%, (c) 75%, (d) 50% and (e) 25% of supervision. The figure aims to illustrate how the decrease
in supervision affects pose estimation. The results are similar, yet it is possible to observe some important discrepancies. For
instance, due to the shortage of labelled training data, the pose estimation result in (e) is worse than the one shown in (b),
particularly regarding the location of arms’ extremities.

appearance, respectively, from the first and second

encoded images. We evaluate qualitatively the effects

of semi-supervision over the indirect pose-transfer in

Fig. 31.

PREDICTED
TARGET POSE

ORIGINAL IMAGE
POSE -TRANSFER 

OUTPUT

STEP 1 STEP 2 STEP 3

Fig. 30 Indirect pose-transfer on Human3.6M. Step 1:
the latent target pose representation yv1

is estimated (En-
coder). Step 2: the image from which the latent appearance
z

2
is estimated (Encoder). Step 3: the output image gener-

ated as a combination of yv1
and z

2
(Decoder). The people’s

outfits in the output images are approximated to the ones in
the original images. However, restricted by the low diversity
of outfits observed in Human3.6M training data. Note that,
to highlight the separation of appearance and pose, we chose
the image on Step 1 to be from camera 2, while the original
images are from cameras, 1, 3 and 4, respectively. As can be
seen, the background scene is totally defined by the original
images.

5.7.2 Semi-DGPose Results on DeepFashion

To show the generality of the Semi-DGPose, model we

present additional results on the DeepFashion dataset,

using our Conditional-DGPose architecture and the

image-to-image translation network PG2 [56] as base-

lines. The same hyper-parameters reported previously

were used in training. In Tab. 5, we compare the

image quality of reconstructions, while in Fig. 32 we

show the comparison concerning the quality of pose

reconstructions. Although the Semi-DGPose presents

less accurate results, it is important to highlight that

it is also tackling the pose estimation task, which is

not performed by either one of the other two methods,

i.e. the Conditional-DGPose and the PG2. To pursue,

simultaneously, the understanding, i.e. estimation of

pose and appearance in the latent space, and the

generation of people directly in images, shows to be

indeed a significantly more complex task. Nevertheless,

the justification for seeking such a challenging goal,

as mentioned before, mainly lie on its important

capability of allowing for semi-supervised learning,

that is not present in the comparable methods.

PSNR SSIM
Semi-DGPose 16.84 0.76

Conditional-DGPose 18.38 0.79
PG2 [56] 18.96 0.83

Table 5 Image Quality on DeepFashion. Quantitative
evaluation of Semi-DGPose using PSNR and SSIM measures
comparing the image quality of reconstructions. The Semi-
DGPose shows less accurate results, yet in contrast to the
other methods, it performs a significantly more complex task,
simultaneously executing pose estimation, and also allowing
for semi-supervised learning.

In Fig. 33, we show comparisons between input and

reconstructed images. In some of the samples, we can

observe small differences between the original and the

reconstructed body postures, mainly regarding the po-

sitions of the limbs. This illustrates the higher com-

plexity involved in simultaneously estimating pose and

appearance in our latent space. For instance, inaccu-

rate predictions of pose, performed by the Encoder,

may have effects into the final reconstructed appear-

ance, and vice-versa, when the latent representations
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JOINTS RIGID BODY

(a)

ORIGINAL OUTPUT

(b)

ORIGINAL OUTPUT

(c)

ORIGINAL OUTPUT

(d)

ORIGINAL OUTPUT

(e)

Fig. 31 Indirect Pose-transfer on Human3.6M. Quali-
tative results with different levels of supervision. (a) Heatmap
representation of the target pose (i.e. after being processed
by the Mapper module) used for all the subsequent results.
Such results show pairs of original images and pose-transfer
outputs obtained with the following levels of supervision: (b)
100%, (c) 75%, (d) 50%, and (e) 25%. In the pose-transfer
outputs, appearance comes from the original images while
the body posture is defined by the target pose.

are mapped back to the image space, by the Decoder.

Such interdependency does not exist when pose is a

given observable variable, as in the case of the condi-

tional models or image-to-image translation networks.

Finally, we highlight indirect pose-transfer in the

DeepFashion dataset, which is a distinctive capability of

the Semi-DGPose, in comparison to related methods. In

Fig. 34, we compare the indirect pose-transfer results,

from our single-stage structured generative model, the

Semi-DGPose, with the results from the image-to-image

translation baseline, the PG2 network [56]. It is im-

portant to notice that our Semi-DGPose model was

not trained specifically for pose-transfer, i.e. it was not

trained on pairs of images. On the other hand, the PG2

architecture is trained on pairs of images of the same
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Fig. 32 Accuracy of Poses on DeepFashion. Quanti-
tative evaluation of Semi-DGPose PCK scores over recon-
structed poses. The Semi-DGPose (green) shows less accu-
rate results, however, in contrast to the Conditional-DGPose
(blue) and the PG2 network [56] (red), it performs a signifi-
cantly more complex task, simultaneously executing pose es-
timation and allowing for semi-supervised learning. Detection
rate represents the percentage of joints correctly relocated in
the reconstructions.

ORIGINAL RECONSTRUCTION ORIGINAL RECONSTRUCTION

Fig. 33 Reconstructions on DeepFashion. The only in-
put of the Semi-DGPose is the original image. At test time, as
pose is estimated in the latent space, discrepancies between
the original and reconstructed poses are more frequently ob-
served, in comparison with the Conditional-DGPose. Best
viewed if zoomed in digital version.

person, in different poses, scales or point of views (first

two images of each set in Fig. 34). Moreover, in the

Semi-DGPose the body pose is estimated by the En-

coder network (illustrated in every second image of each

set in Fig. 34), along with appearance, while in the PG2

pose is given as an observable variable to the model.
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Despite such critical competitive disadvantages, we can

observe that the Semi-DGPose produce reasonable re-

sults in comparison to the ones from PG2. Lastly, it is

crucial to call attention for the capabilities of our Semi-

DGPose approach such as, interpretability of the latent

space, pose estimation, sampling and semi-supervised

learning, which are not jointly present in the PG2 or in

the related work from the literature. These features jus-

tify our approach for learning a deep generative model

of people in images and, to our knowledge, significantly

differentiate the Semi-DGPose model from prior art.

5.8 Limitations of the Models

Here, we discuss two important limitations common to

the Conditional-DGPose and the Semi-DGPose. The

first refers to the modelling of appearance in both mod-

els. As we mention in Sec. 1, our latent representation

of appearance encodes all the visual information in the

images (e.g. clothing, skin colours, hairstyles, and back-

ground) except for the body pose of the subjects. How-

ever, such a strategy does not separate the individual

visual characteristics in the latent representation. In

Fig. 21 (Sec. 5.6.4), we can observe that as the appear-

ance manifold is traversed, the visual features gradu-

ally change altogether. A disentangled representation

for appearance itself would be needed for allowing con-

trol over specific visual features. Another aspect con-

cerning appearance regards limitations to approximate

clothing “seen” few times or “unseen” during train-

ing. Interestingly, the extrapolation capabilities shown

for unseen poses (see Fig. 18 in Sec. 5.6.2) is not ob-

served for appearance. For example, in the Human3.6M

dataset, the low diversity of subjects outfits may even-

tually prevent the clothing in the reconstructed images

to be precisely equal to the ones in the original images,

as can be observed in Fig. 30 (Sec. 5.7.1). Other works

in the literature refer to this same problem concerning

the Human3.6M dataset, e.g. Rhodin et al. [73].

The second relevant limitation refers to our pose

representation. Aiming to investigate and explore the

capabilities of simple body representations, we have

worked only with 2D pose in our models. Such option

turns our approaches more general since they are not

dependent on 3D information (e.g. 3D models, cam-

era calibration, or multi-view images). It allows, for

example, their application on ordinary monocular im-

ages. Moreover, this strategy is also less susceptible to

body shape variations in comparison to segmentations

mask or 3D body meshes, which might not be directly

transferable from one person to another. However, such

simplicity creates some limitations. An important one

concerns the lack of depth information in the body

model. Despite the reasonable results obtained with sin-

gle people in relatively “well-behaved” poses, the mod-

els might face difficulties in the presence of stronger self-

occlusions associated with particular body postures. In

the absence of depth, it is hard to infer, for instance,

which one of two overlapping limbs is closer to the cam-

era. Without such explicit information in the body rep-

resentation, the correct reconstruction might present

flaws.

To analyse such issues here, which are present in

our both models, we have employed the Conditional-

DGPose, trained on the Human3.6M dataset, to

perform cross-domain pose-transfer over single images

from short video sequences. Employing a sequence

of frames allow us to observe how the performance

of the model changes according to the concurrent

presence of self-occlusion and different poses. In the

current experiments, we have used short videos from

the JHMDB dataset [39]. Each “in-the-wild” video

depicts a single person performing one activity. The

dataset provides 2D pose annotations per frame for

all videos. Such annotations are used as inputs for the

Conditional-DGPose cross-domain pose-transfer. We

crop the images maintaining the subjects centralised.

In Fig. 35a, a sequence of frames shows a boy bat-

ting a ball while playing baseball (top row) and the

correspondent pose-transfer outputs (bottom row). Al-

though the reenacted frames present the gist of the orig-

inal sequence, already it is possible to observe that over-

lapping arms and legs appear to be blended in some of

the output images (e.g. frames 1 and 5), making evident

the problem we have mentioned earlier. Fig. 35b (top

row) depicts a football player kicking a ball towards the

goal. We call attention for frame 5, in which the self-

occluded arm of the original subject turns the upper

body of the reconstructed person wider. In frame 9,

the concurrent overlapping legs and the unusual pose

contribute for an ambiguous posture of the person in

the output image, which might be facing forwards or

backwards. The particular body pose in frame 25 pro-

vokes the misalignment of head, torso and arms in of the

body in the output. Finally, even without a task-specific

training, we believe that the use of a 3D body repre-

sentation, which would explicitly encode depth, may be

beneficial to mitigate the main issues mentioned above.

6 Conclusions

In this paper, we have presented a comprehensive

deep generative model framework for human pose

analysis in images. Our models are based on a

principled VAEGAN approach and allow the disen-

tanglement of body posture and visual appearance,
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ORIGINAL TARGET POSE OURS PG2 ORIGINAL TARGET POSE OURS PG2

Fig. 34 Indirect pose-transfer in DeepFashion dataset. In each set of images, we have, respectively: the original image,
the target image with the superimposed target pose predicted by the Semi-DGPose, the pose-transfer output from the Semi-
DGPose and the pose-transfer output from PG2 [56]. Although tackling a more complex task than [56], which includes the
prediction of pose, our results are still reasonable.

aiming for the independent manipulation of such

factors. With our conditional-VAEGAN model, the

Conditional-DGPose, differently from previous art,

we have taken such manipulation to extreme cases,

e.g. by performing cross-domain pose-transfer and by

hallucinating multiple people in a variety of unseen

or even unrealistic poses. Moreover, we have achieved

state-of-the-art results on image reconstruction con-

ditioned on pose, outperforming the closest related

comparable baseline [51]. With a single-stage struc-

tured semi-supervised VAEGAN architecture, the

Semi-DGPose, we pursued the joint understanding

and generation of people in images, not only mapping

images to partially interpretable latent representations

but also mapping these representations back to the

image space. Importantly, such an approach simulta-

neously allows for reconstruction, direct manipulation,

sampling, pose estimation, indirect pose-transfer,

and semi-supervised learning. These joint capabilities

differentiate the Semi-DGPose from other methods in

the literature and demonstrate a real-world application

of structured deep generative models with the highly

relevant potential of being less dependable of fully-

labelled data. We have systematically evaluated our

methods on well-known benchmarks, the Human3.6M,

the ChictopiaPlus, and the DeepFashion datasets,

comparing our results with the closest related baseline

methods in the literature [51,56]. Such results and

comparisons highlight the novelty and effectiveness

of our approaches and its capabilities, despite the

significant challenge posed by our aimed goal. We be-

lieve that we have shown and reinforced the relevance

of employing an interpretable and structured latent

space, which allows for semi-supervised learning, as

well as the importance of tackling the problem with

single-stage end-to-end architectures.
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Fig. 35 Cross-domain pose-transfer over single images from short video sequences from the JHMDB dataset [39]. (a) A
sequence of frames shows a boy batting a ball while playing baseball (top row) and the correspondent pose-transfer outputs
(bottom row). Mainly due to self-occlusion, some limbs appear blended. (b) A football player is kicking a ball towards the
goal (top row) and the correspondent pose-transfer outputs (bottom row). Frames 5, 9, and 25 present important issues due
to particular postures and self-occlusion of limbs. Best viewed if zoomed in digital version.
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A DGPose Architectures Details

Here, we provide implementation details of our both archi-
tectures considering the following inputs: images x (batch -
size=64, channels=3, height=64, width=64) and heatmaps
yh (batch size=64, channels=24, height=64, width=64). Re-
garding the heatmap labels, the channels correspond to: i) 14
joints (head top, neck, right shoulder, right elbow, right wrist,
right hip, right knee, right ankle, left shoulder, left elbow, left
wrist, left hip, left knee, left ankle); ii) 9 rigid parts (head,
right upper arm, right lower arm, right upper leg, right lower
leg, left upper arm, left lower arm, left upper leg, left lower
leg); iii) 1 whole body. Finally, in Tabs. A2 and A3, we show
the full definition of both, the Conditional-DGPose and the
Semi-DGPose, respectively.

RESIDUAL Layer
Input: previous layer output
Layer Definition
1 CONV-(N512, K3, S1, P1), BN, ReLU
2 CONV-(N512, K3, S2, P1), BN
3 SUM(CONV-2, previous layer output)

Table A1 Architecture of the residual block employed in the
DGPose encoder.
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Encoder
Input: x(batch size=64, channels=3, height=64, width=64);
yh(batch size=64, channels=24, height=64, width=64)

Layer Definition
1 CONCAT(x, yh)
2 CONV-(N64, K7, S2, P1), LeakyReLU(0.01)
3 CONV-(N128, K3, S2, P1), BN, ReLU
4 CONV-(N256, K3, S2, P1), BN, ReLU
5 CONV-(N512, K3, S2, P1), BN, ReLU
6 CONV-(N512, K3, S2, P1), BN, ReLU
7 CONV-(N512, K3, S2, P1), BN, ReLU
8 RESIDUAL-(N512, K3, S1, P1)
9 RESIDUAL-(N512, K3, S1, P1)
10 RESIDUAL-(N512, K3, S1, P1)
11 RESIDUAL-(N512, K3, S1, P1), SIGMOID
µz FC-(N100)
σz FC-(N100)

Prior
Input: yh(batch size=64, channels=24, height=64, width=64)

Layer Definition
1 CONV-(N128, K4, S2, P1), LeakyReLU(0.2)
2 CONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
3 CONV-(N512, K4, S2, P1), BN, LeakyReLU(0.2)
4 CONV-(N1024, K4, S2, P1), BN, LeakyReLU(0.2)
5 CONV-(N100, K4, S1, P0), SIGMOID
µprior FC-(N100)
σprior FC-(N100)

Decoder
Input: z(batch size=64, channels=100)

Layer Definition
1 RESHAPE(batch size=64, channels=100, height=1, width=1)

2 DECONV-(N512, K4, S1, P0), BN, LeakyReLU(0.2)
3 DECONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
5 DECONV-(N64, K4, S2, P1), BN, LeakyReLU(0.2)
6 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
7 CONCAT(DECONV-6, yh)
8 CONV-(N512, K5, S1, P2), BN, LeakyReLU(0.2)
9 CONV-(N256, K5, S1, P2), BN, LeakyReLU(0.2)
10 CONV-(N128, K5, S1, P2), BN, LeakyReLU(0.2)
11 CONV-(N128, K5, S1, P2), BN, LeakyReLU(0.2)
G(yh, z) CONV-(N3, K5, S1, P2), TANH

Discriminator
Input: G(yh, z)(batch size=64, channels=3, height=64, width=64);
x(batch size=64, channels=3, height=64, width=64)

Layer Definition
1 CONV-(N64, K4, S2, P1), LeakyReLU(0.2)
2 CONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
3 CONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 CONV-(N512, K4, S2, P1), BN, LeakyReLU(0.2)
5 CONV-(N1, K4, S1, P0), SIGMOID

Table A2 Conditional-DGPose architecture for 64 × 64 in-
put images. We use the following abbreviations: N for the
number of kernels/neurons, K for kernel size, S for stride and
P for zero padding. Concerning the layers, CONCAT means
concatenation layer, CONV means convolutional layer, BN
means batch normalization layer with running average co-
efficient β = 0.9 and learnable affine transformation, DE-
CONV means transpose convolutional layer, FC means fully
connected layer, SUM corresponds to element-wise sum layer
and RESIDUAL denotes a residual block, detailed at Ta-
ble A1. The additional layers can be clearly understood. Fi-
nally, particular parameters for specific layers are defined be-
tween parenthesis after the layers’ names.

Encoder
Input: x(batch size=64, channels=3, height=64, width=64)

Layer Definition
1 CONV-(N64, K7, S2, P1), LeakyReLU(0.01)
2 CONV-(N128, K3, S2, P1), BN, ReLU
3 CONV-(N256, K3, S2, P1), BN, ReLU
4 CONV-(N512, K3, S2, P1), BN, ReLU
5 CONV-(N512, K3, S2, P1), BN, ReLU
6 CONV-(N512, K3, S2, P1), BN, ReLU
7 RESIDUAL-(N512, K3, S1, P1)
8 RESIDUAL-(N512, K3, S1, P1)
9 RESIDUAL-(N512, K3, S1, P1)
10 RESIDUAL-(N512, K3, S1, P1), SIGMOID
µz FC-(N100)
σz FC-(N100)
µyv FC-(N48)
σyv FC-(N48)

Mapper
Input: yv(batch size=64, channels=48)

Layer Definition
1 RESHAPE(batch size=64, channels=48, height=1, width=1)

2 DECONV-(N512, K4, S1, P0), BN, LeakyReLU(0.2)
3 DECONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
5 DECONV-(N64, K4, S2, P1), BN, LeakyReLU(0.2)
yh DECONV-(N24, K4, S2, P1), SIGMOID

Decoder
Input: z(batch size=64, channels=100);
yv(batch size=64, channels=48);
yh(batch size=64, channels=24, height=64, width=64)

Layer Definition
1 CONCAT(z, yv)
2 RESHAPE(batch size=64, channels=148, height=1, width=1)

3 DECONV-(N512, K4, S1, P0), BN, LeakyReLU(0.2)
4 DECONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
5 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
6 DECONV-(N64, K4, S2, P1), BN, LeakyReLU(0.2)
7 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
8 CONCAT(DECONV-6, yh)
9 CONV-(N512, K5, S1, P2), BN, LeakyReLU(0.2)
10 CONV-(N256, K5, S1, P2), BN, LeakyReLU(0.2)
11 CONV-(N128, K5, S1, P2), BN, LeakyReLU(0.2)
12 CONV-(N128, K5, S1, P2), BN, LeakyReLU(0.2)
G(yv, z) CONV-(N3, K5, S1, P2), TANH

Discriminator
Input: G(yv, z)(batch size=64, channels=3, height=64, width=64);
x(batch size=64, channels=3, height=64, width=64)

Layer Definition
1 CONV-(N64, K4, S2, P1), LeakyReLU(0.2)
2 CONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
3 CONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 CONV-(N512, K4, S2, P1), BN, LeakyReLU(0.2)
5 CONV-(N1, K4, S1, P0), SIGMOID

Table A3 Semi-DGPose architecture for 64 × 64 input im-
ages. We use the following abbreviations: N for the number of
kernels/neurons, K for kernel size, S for stride and P for zero
padding. Concerning the layers, CONCAT means concatena-
tion layer, CONV means convolutional layer, BN means batch
normalization layer with running average coefficient β = 0.9
and learnable affine transformation, DECONV means trans-
pose convolutional layer, FC means fully connected layer,
SUM corresponds to element-wise sum layer and RESIDUAL
denotes a residual block, detailed at Table A1. The additional
layers can be clearly understood. Finally, particular parame-
ters for specific layers are defined between parenthesis after
the layers’ names.
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